精英家教网 > 高中数学 > 题目详情
已知点F(0,1),直线l:y=-2.
(1)若动点M到点F的距离比它到直线l的距离小1,求动点M的轨迹E的方程;
(2)过轨迹E上一点P作圆C:x2+(y-3)2=1的切线,切点分别为A、B,求四边形PACB的面积S的最小值和此时P的坐标.
分析:(1)直接代入距离公式来求动点M轨迹E的方程即可(注意讨论).
(2)先利用图象和已知条件把S转化为求|AP|问题,然后在△PAC中借助于点P在E上求出|AP|的最小值即可.
解答:解:(1):设动点M(x,y).
由题设条件可知
x2+(y-1)2
-|y+2|=-1
,即
x2+(y-1)2
=|y+2|-1

①当y+2≥0时,即y≥-2时,有
x2+(y-1)2
=(y+2)-1

两端平方并整理得 y=
1
4
x2

②当y+2<0即y<-2时有
x2+(y-1)2
=-(y+2)-1

两端平方并整理得 y=-
1
8
x2-1

∵x2>0∴y=-
1
8
x2-1
>-1
这与y<-2矛盾.
综合①②知轨迹E的方程为 y=
1
4
x2

(2)连PC,不难发现S=S△PAC+S△PBC=2S△PAC
∵CA⊥PA且|AC|=1∴S=2•
1
2
•|AP|•|AC|

即S=|AP||
设P(x0,y0)于是,|AP|2+|AC|2=|PC|2=x02+(y0-3)2
|AP|=
4y0+
y
2
0
-6y0+8
.又
x
2
0
=4y0

|AP|2=
4y0+
y
2
0
-6y0+8
=
(y 0-1)2+7
7

当且仅当y0=1时“=”成立,此时x0=±2
所以四边形PACB存在最小值,最小值是
7
,此时P点坐标是(±2,1)
点评:本题以轨迹方程为载体,考查到求动点M的轨迹E的方程问题.在做这一类型题时,关键是找到关于动点M的等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点F(0,1),直线l:y=-1,P为平面上的动点,点P到点F的距离等于点P到直线l的距离.
(1)求动点P的轨迹C的方程;
(2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)已知圆M过定点D(0,2),圆心M在轨迹C上运动,且圆M与x轴交于A、B两点,设|DA|=l1,|DB|=l2,求
l1
l2
+
l2
l1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点F(0,1),直线L:y=-2,及圆C:x2+(y-3)2=1.
(1)若动点M到点F的距离比它到直线L的距离小1,求动点M的轨迹E的方程;
(2)过点F的直线g交轨迹E于G(x1,y1)、H(x2,y2)两点,求证:x1x2 为定值;
(3)过轨迹E上一点P作圆C的切线,切点为A、B,要使四边形PACB的面积S最小,求点P的坐标及S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石家庄二模)在平面直角坐标系中,已知点F(0,1),直线l:y=-1,P为平面内动点,过点P作直线l的垂线,垂足为Q,且
QF
•(
QP
+
FP
)=0

(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)过点M(0,m)(m>0)的直线AB与曲线E交于A、B两个不同点,设∠AFB=θ,若对于所有这样的直线AB,都有θ∈(
π
2
,π].求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区二模)如图,已知点F(0,1),直线m:y=-1,P为平面上的动点,过点P作m的垂线,垂足为点Q,且
QP
QF
=
FP
FQ

(1)求动点P的轨迹C的方程;
(2)(文)过轨迹C的准线与y轴的交点M作方向向量为
d
=(a,1)的直线m′与轨迹C交于不同两点A、B,问是否存在实数a使得FA⊥FB?若存在,求出a的范围;若不存在,请说明理由;
(3)(文)在问题(2)中,设线段AB的垂直平分线与y轴的交点为D(0,y0),求y0的取值范围.

查看答案和解析>>

同步练习册答案