精英家教网 > 高中数学 > 题目详情
7.若关于x的函数y=(log${\;}_{\frac{1}{2}}$a)x是R上的减函数,则实数a的取值范围是($\frac{1}{2}$,1).

分析 根据指数函数的单调性,可得log${\;}_{\frac{1}{2}}$a∈(0,1),结合对数函数的图象和性质,可得实数a的取值范围.

解答 解:∵关于x的函数y=(log${\;}_{\frac{1}{2}}$a)x是R上的减函数,
∴log${\;}_{\frac{1}{2}}$a∈(0,1),
∴a∈($\frac{1}{2}$,1),
故答案为:($\frac{1}{2}$,1).

点评 本题考查的知识点是指数函数的图象和性质,对数函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在椭圆$\frac{{x}^{2}}{2}$+y2=1中,弦长为2的弦的中点的轨迹方程为10x4y2-8x2y4-3x6-8y4-4x2y2=0(-$\sqrt{2}$<x<$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a,b为正整数,且a+b=1,求证:$\frac{1}{a}$+$\frac{1}{b}$≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若以双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点和点(1,$\sqrt{2}$)为顶点的三角形为直角三角形,则b等于(  )
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若椭圆的两个焦点与其中一个短轴端点恰好连成等腰直角三角形,则该椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=sin(4x-\frac{π}{6})+\sqrt{3}sin(4x+\frac{π}{3})$
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)将函数y=f(x)的图象向左平移$\frac{π}{48}$个单位,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数y=g(x)在[-π,0]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C的两个焦点分别为F1(-$\sqrt{10}$,0),F2($\sqrt{10}$,0),且椭圆C过点P(3,2).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)与直线OP平行的直线交椭圆C于A,B两点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$的焦点为F1、F2,直线L过点F1,且与椭圆相交于A,B两点,则△ABF2的周长为(  )
A.9B.16C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C对边分别是a、b、c,且满足2$\overrightarrow{AB}$•$\overrightarrow{AC}$=a2-(b-c)2
(Ⅰ)求角A的大小;
(Ⅱ)若a=4$\sqrt{3}$,△ABC的面积为4$\sqrt{3}$,求b,c.

查看答案和解析>>

同步练习册答案