【题目】如图,直三棱柱中,,,,P为的中点.
(1)证明:平面;
(2)设E为BC的中点,线段上是否存在一点Q,使得平面?若存在,求四棱锥的体积;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图1,在中,,,为的中点,将沿折起,得到如图2所示的三棱锥,二面角为直二面角.
(1)求证:平面平面;
(2)设分别为的中点,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解用户对其产品的满意度,从甲、乙两地区分别随机调查了100个用户,根据用户对产品的满意度评分,分别得到甲地区和乙地区用户满意度评分的频率分布直方图.
若甲地区和乙地区用户满意度评分的中位数分别为m1,m2;平均数分别为s1,s2,则下面正确的是( )
A. m1>m2,s1>s2B. m1>m2,s1<s2
C. m1<m2,s1<s2D. m1<m2,s1>s2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市教学研究室为了对今后所出试题的难度有更好的把握,提高命题质量,对该市高三理科数学试卷的得分情况进行了调研.从全市参加考试的理科考生中随机抽取了100名考生的数学成绩(满分150分),将数据分成9组:,,,,,,,,,并整理得到如图所示的频率分布直方图.用统计的方法得到样本标准差,以频率值作为概率估计值.
(Ⅰ)根据频率分布直方图,求抽取的100名理科考生数学成绩的平均分及众数;
(Ⅱ)用频率估计概率,从该市所有高三理科考生的数学成绩中随机抽取3个,记理科数学成绩位于区间内的个数为,求的分布列及数学期望;
(Ⅲ)从该市高三理科数学考试成绩中任意抽取一份,记其成绩为,依据以下不等式评判(表示对应事件的概率):
①,②,
③,其中.
评判规则:若至少满足以上两个不等式,则给予这套试卷好评,否则差评.试问:这套试卷得到好评还是差评?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为,直线与抛物线交于两点.
(1)若过点,且,求的斜率;
(2)若,且的斜率为,当时,求在轴上的截距的取值范围(用表示),并证明的平分线始终与轴平行.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间(分钟) | 10 | 11 | 12 | 13 | 14 | 15 |
等侯人数(人) | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值不超过1,则称所求方程是“恰当回归方程”.
(1)若选取的是后面4组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;
(2)为了使等候的乘客不超过35人,试用(1)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟?
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,的顶点,,且、、成等差数列.
(1)求的顶点的轨迹方程;
(2)直线与顶点的轨迹交于两点,当线段的中点落在直线上时,试问:线段的垂直平分线是否恒过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一块以点为圆心,半径为百米的圆形草坪,草坪内距离点百米的点有一用于灌溉的水笼头,现准备过点修一条笔直小路交草坪圆周于两点,为了方便居民散步,同时修建小路,其中小路的宽度忽略不计.
(1)若要使修建的小路的费用最省,试求小路的最短长度;
(2)若要在区域内(含边界)规划出一块圆形的场地用于老年人跳广场舞,试求这块圆形广场的最大面积.(结果保留根号和)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com