精英家教网 > 高中数学 > 题目详情
6.已知点A是抛物线C:x2=2py(p>0)上一点,O为坐标原点,若A,B是以点M(0,9)为圆心,|OA|的长为半径的圆与抛物线C的两个公共点,且△ABO为等边三角形,则p的值是$\frac{3}{4}$.

分析 由题意,|MA|=|OA|,可得A的纵坐标,利用△ABO为等边三角形,求出A的横坐标,根据点A是抛物线C:x2=2py(p>0)上一点,即可求出p的值.

解答 解:由题意,|MA|=|OA|,∴A的纵坐标为4.5,
∵△ABO为等边三角形,
∴A的横坐标为$\frac{3\sqrt{3}}{2}$,
∵点A是抛物线C:x2=2py(p>0)上一点,
∴$\frac{27}{4}$=2p×$\frac{9}{2}$
∴p=$\frac{3}{4}$.
故答案为$\frac{3}{4}$.

点评 本题考查抛物线的方程,考查抛物线与圆的综合,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若定义运算a*b为:a*b=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,如1*2=1,则函数f(x)=2x*2-x的值域为(  )
A.RB.(0,1]C.(0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D是AB的中点.
(1)求证:AC⊥B1C;  
(2)求证:AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)将参数方程转化为普通方程:$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.({θ为参数})$
(2)求椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$的参数方程:
①设x=3cosφ,φ为参数;
②设y=2t,t为参数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线ax+by+1=0(a、b>1)过圆x2+y2+8x+2y+1=0的圆心,则$\frac{1}{a}+\frac{4}{b}$的最小值为(  )
A.8B.12C.16D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$f(x)={cos^2}x-{sin^2}x+2\sqrt{3}sinxcosx+1$
求(1)f(x)的最小正周期及单调递增区间;
(2)$x∈[{-\frac{π}{6},\frac{π}{3}}]$时,f(x)-3≥m恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数$f(x)=2sin(\frac{π}{3}x+\frac{π}{2})$,若对任意x都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为(  )
A.2B.4C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知角α的终边经过点P(-4a,3a)(a≠0),求sinα+cosα-tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在极坐标系中,曲线C:ρ=2cosθ,l:ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$.
(1)求曲线C和直线l的直角坐标方程;
(2)O为极点,A,B为曲线C上的两点,且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

查看答案和解析>>

同步练习册答案