精英家教网 > 高中数学 > 题目详情
10.某莲藕种植塘每年的固定成本是10000元,每年最大规模的种植量是40000斤,每种值一斤藕,成本增加0.5元,如果收入函数是R(q)=-$\frac{1}{3}$q3+10000q2+$\frac{4020001}{2}$q(q是莲藕的重量,单位:斤),问每年种植(  )斤莲藕,可使利润最大.
A.10000B.12000C.20000D.20100

分析 求出利润函数,利用导数求最大值.

解答 解:由题意,利润L=-$\frac{1}{3}$q3+10000q2+$\frac{4020001}{2}$q-100000-0.5q=-$\frac{1}{3}$q3+10000q2+2010000q-100000(0<q≤40000).
∴L′=-q2+20000q+2010000=-(q-20100)(q+100),
∴函数在(0,20100)上单调递增,在(20100,40000)上单调递减,
∴q=20100,利润最大.
故选:D.

点评 本题考查利用导数解决实际问题,考查函数的单调性与最大值,确定函数的解析式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.不等式$\frac{({x}^{3}-1)(3-2x-{x}^{2})}{({x}^{2}+x-12)}$≤0的解集为(  )
A.(-∞,-4)∪[-3,3)B.(-4,-3]∪{1}∪(3,+∞)C.(-∞,-3]∪{1}∪(3,+∞)D.[-3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(2-x,y),$\overrightarrow{b}$=(2,1),若$\overrightarrow{a}$$∥\overrightarrow{b}$,则3x+9y的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点A的坐标(x,y)满足不等式$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+2y≤6}\\{3x+y≤12}\end{array}\right.$,则|x-y|的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.所有正因子的和大于自身2倍的正整数称为“富裕数”.例如,18的正因子是1,2,3,6,9,18,1+2+3+6+9+18=39>36,18是“富裕数”.设计一个算法,求出1~100中的所有“富裕数”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|x≥-2},集合B={x|x2≤4},则集合(∁RB)∩A=(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)=$\left\{\begin{array}{l}{-x+a,x<\frac{1}{2}}\\{{4}^{x}-3,x≥\frac{1}{2}}\end{array}\right.$的最小值为-1,则实数a的取值范围是a≥-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}满足a2=3,a4+a5=16.
(1)求{an}的通项公式;
(2)设bn=${2}^{{a}_{n}-1}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2,n∈N).
(Ⅰ)试判断数列{$\frac{1}{{a}_{n}}$}是否为等差数列.
(2)求数列{$\frac{2n+5}{{a}_{n}}$}的前n项和.

查看答案和解析>>

同步练习册答案