分析 (1)直接由已知结合向量数量积的坐标运算求得cosA=-$\frac{1}{2}$,再结合A∈(0,π)求得A值;
(2)利用三角形的面积公式结合余弦定理列式求得b+c的值.
解答 解:(1)∵向量$\overrightarrow{m}$=(cos2$\frac{A}{2}$,cos$\frac{A}{2}$-1),向量$\overrightarrow{n}$=(1,cos$\frac{A}{2}$+1)且2$\overrightarrow{m}$•$\overrightarrow{n}$=-1.
∴$co{s}^{2}\frac{A}{2}-si{n}^{2}\frac{A}{2}=-\frac{1}{2}$,
得cosA=-$\frac{1}{2}$,又A∈(0,π),∴A=$\frac{2π}{3}$;
(2)由${S}_{△ABC}=\frac{1}{2}bcsinA=\frac{1}{2}bcsin\frac{2π}{3}=\sqrt{3}$,得bc=4.
又由余弦定理得:${a}^{2}={b}^{2}+{c}^{2}-2bccos\frac{2π}{3}={b}^{2}+{c}^{2}+bc$.
∴16=(b+c)2,
∴b+c=4.
点评 本题考查平面向量的数量积运算,考查了余弦定理在解三角形中的应用,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{1}{2}$ | ||
C. | 0 | D. | 随m,n的变化而变化 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第四象限 | B. | 第三象限 | C. | 第二象限 | D. | 第一象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 30 | B. | -30 | C. | ±30 | D. | 15 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com