精英家教网 > 高中数学 > 题目详情

【题目】已知函数既存在极大值,又存在极小值.

1)求实数的取值范围;

2)当时,分别为的极大值点和极小值点.,求实数的取值范围.

【答案】1;(2.

【解析】

1)求出函数的导数,结合函数的单调性确定的范围即可;

2)求出函数的极值点,问题转化为,设,根据函数的单调性确定的范围即可.

解:(1)由

由题意,若存在极大值和极小值,则必有两个不相等的实数根,

,所以必有一个非零实数根,

,∴,∴.

综上,实数的取值范围为.

2)当时,由(1)可知的极大值点为,极小值点为

此时

依题意得对任意恒成立,

由于此时,所以

所以,即

,则

,判别式.

①当时,,所以单调递增,

所以,即,符合题意;

②当时,,设的两根为,且

,因此

则当时,单调递减,

所以当时,,即

所以,矛盾,不合题意;

综上,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数上的单调性;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数.

1)当时,求的极值;

2)当时,函数的图象与函数的图象有唯一的交点,求的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“挑战不可能”的电视节目上,甲、乙、丙三个人组成的解密团队参加一项解密挑战活动,规则是由密码专家给出题目,然后由3个人依次出场解密,每人限定时间是1分钟内,否则派下一个人.3个人中只要有一人解密正确,则认为该团队挑战成功,否则挑战失败.根据甲以往解密测试情况,抽取了甲100次的测试记录,绘制了如图所示的频率分布直方图.

1)若甲解密成功所需时间的中位数为47,求的值,并求出甲在1分钟内解密成功的频率;

2)在“挑战不可能”节目上由于来自各方及自身的心理压力,甲,乙,丙解密成功的概率分别为,其中表示第个出场选手解密成功的概率,并且定义为甲抽样中解密成功的频率代替,各人是否解密成功相互独立.

①求该团队挑战成功的概率;

②该团队以从小到大的顺序按排甲、乙、丙三个人上场解密,求团队挑战成功所需派出的人数的可能值及其概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)

(Ⅰ)求证:数列{an-1}是等比数列;

(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果对任意n∈N*,都有bn+t≤t2,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.

已知等差数列的公差为,等差数列的公差为.分别是数列的前项和,且

1)求数列的通项公式;

2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,令

1)当时,求函数的单调区间;

2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x),x∈[1,+∞),数列{an}满足

①函数f(x)是增函数;

②数列{an}是递增数列.

写出一个满足①的函数f(x)的解析式______

写出一个满足②但不满足①的函数f(x)的解析式______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点为FQ是抛物线上的一点,

(Ⅰ)求抛物线C的方程;

(Ⅱ)过点作直线l与抛物线C交于MN两点,在x轴上是否存在一点A,使得x轴平分?若存在,求出点A的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案