【题目】分形理论是当今世界十分风靡和活跃的新理论、新学科.其中把部分与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象.图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已.谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,其构造方法如下:取一个实心的等边三角形(如图1),沿三边的中点连线,将它分成四个小三角形,挖去中间的那一个小三角形(如图2),对其余三个小三角形重复上述过程(如图3).若图1(阴影部分)的面积为1,则图4(阴影部分)的面积为( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】新冠肺炎期间某商场开通三种平台销售商品,收集一月内的数据如图1;为了解消费者对各平台销售方式的满意程度,该商场用分层抽样的方法抽取4%的顾客进行满意度调查,得到的数据如图2.下列说法错误的是( )
A.样本容量为240
B.若样本中对平台三满意的人数为40,则
C.总体中对平台二满意的消费者人数约为300
D.样本中对平台一满意的人数为24人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是( )
A.相邻两个节气晷长减少或增加的量为一尺
B.春分和秋分两个节气的晷长相同
C.立冬的晷长为一丈五寸
D.立春的晷长比立秋的晷长短
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是各项都为整数的等差数列,其前n项和为,是等比数列,且,,,.
(1)求数列,的通项公式;
(2)设cn=log2b1+log2b2+log2b3+…+log2bn, .
(i)求Tn;
(ii)求证:2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着生活节奏的加快以及智能手机的普及,外卖点餐逐渐成为越来越多用户的餐饮消费习惯,由此催生了一批外卖点餐平台.已知某外卖平台的送餐费用与送餐距离有关(该平台只给5千米范围内配送),为调査送餐员的送餐收入,现从该平台随机抽取100名点外卖的用户进行统计,按送餐距离分类统计结果如表:
送餐距离(千米) | (0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
频数 | 15 | 25 | 25 | 20 | 15 |
以这100名用户送餐距离位于各区间的频率代替送餐距离位于该区间的概率.
(1)若某送餐员一天送餐的总距离为100千米,试估计该送餐员一天的送餐份数;(四舍五入精确到整数,且同一组中的数据用该组区间的中点值为代表).
(2)若该外卖平台给送餐员的送餐费用与送餐距离有关,规定2千米内为短距离,每份3元,2千米到4千米为中距离,每份7元,超过4千米为远距离,每份12元.记X为送餐员送一份外卖的收入(单位:元),求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国是茶的故乡,也是茶文化的发源地.中国茶的发现和利用已有四千七百多年的历史,且长盛不衰,传遍全球.为了弘扬中国茶文化,某酒店推出特色茶食品“金萱排骨茶”,为了解每壶“金萱排骨茶”中所放茶叶量克与食客的满意率的关系,通过试验调查研究,发现可选择函数模型来拟合与的关系,根据以下数据:
茶叶量克 | 1 | 2 | 3 | 4 | 5 |
4.34 | 4.36 | 4.44 | 4.45 | 4.51 |
可求得y关于x的回归方程为( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com