精英家教网 > 高中数学 > 题目详情
在△ABC中A>B,则下列不等式中不一定正确的是(  )
分析:由三角形中大角对大边知a>b,再由正弦定理知选项A正确;
由余弦函数在(0,π)上的单调性知选项B正确;
若取A=60°,B=45°,可判断选项C是否正确;
利用作差法可判断选项D正确.
解答:解:在三角形中大角对大边,∵A>B,∴a>b,由正弦定理知
a
sinA
=
b
sinB
=
c
sinC
=2R
(R为△ABC外接圆的半径),
从而a=2RsinA,b=2RsinB,∴2RsinA>2RsinB,∴sinA>sinB.∴选项A正确. 
y=cosx在(0,π)上是减函数,∵0<A<π,0<B<π,且A>B,∴cosA<cosB.∴选项B正确.
取A=60°,B=45°,则sin2A=sin120°=
3
2
,sin2B=sin90°=1,有sin2A<sin2B,∴选项C不一定正确.
∵A+B+C=π,∴sin(A+B)=sinC,∵0<A-B<π,∴sin(A-B)>0,又sinC>0,
∴cos2A-cos2B=-2sin(A+B)sin(A-B)=-2sinCsin(A-B)<0,∴cos2A<cos2B.∴选项D正确.
故选C.
点评:本题考查了三角形中的不等关系及不等式,要注意三角形中所包含的条件,如:A+B+C=π,大边对大角等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题P:底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥;命题Q:在△ABC中A>B是cos2
A
2
+
π
4
)<cos2
B
2
+
π
4
)成立的必要非充分条件,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中a、b、c分别内角A、B、C的对边,已知向量
m
=(c,b),
n
=(sin2B,sinC),且
m
n

(l)求角B的度数;
(2)若△ABC的面积为
3
3
4
,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北二模)在△ABC中a,b,c分别为角A,B,C所对的边的边长.
(1)试叙述正弦或余弦定理并证明之;
(2)设a+b+c=1,求证:a2+b2+c2
13

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中a、b、c分别是角A、B、C的对边,若△ABC的周长等于20,面积是10
3
,A=60°,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中a、b、c分别是角A、B、C的对边,b=2,a=1,cosC=
34

(1)求边c 的值;
(2)求sin(2A+C)的值.

查看答案和解析>>

同步练习册答案