精英家教网 > 高中数学 > 题目详情
3.设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在(a,b)上,f″(x)>0恒成立,则称函数y=f(x)在(a,b)上为“凹函数”.若f(x)=x2-aex+2是(-∞,0)上的“凹函数”,求实数a的取值范围.

分析 f(x)=x2-aex+2是(-∞,0)上的“凹函数”,可得在(-∞,0)上,f″(x)>0恒成立,利用导数的运算法则分别可得f′(x),f(x),转化为$a<(\frac{2}{{e}^{x}})_{min}$,x∈(-∞,0).即可得出.

解答 解:f′(x)=2x-aex,f(x)=2-aex
∵f(x)=x2-aex+2是(-∞,0)上的“凹函数”,
∴在(-∞,0)上,f″(x)>0恒成立,
∴2-aex>0在(-∞,0)上恒成立,
∴$a<(\frac{2}{{e}^{x}})_{min}$,x∈(-∞,0).
∵$\frac{2}{{e}^{x}}$>2,
∴a≤2.
∴实数a的取值范围是(-∞,2].

点评 本题考查了“凹函数”的定义及其性质、导数的运算法则、恒成立问题的等价转化,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若$\overrightarrow{a}$=(6,8),则与$\overrightarrow{a}$平行的单位向量是$±(\frac{3}{5},\frac{4}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果函数f(x)=2sinωx+2在[-$\frac{π}{3}$,$\frac{π}{3}$]上是减函数,那么ω的取值范围是(  )
A.(0,$\frac{3}{2}$]B.[-$\frac{3}{2}$,0)C.(0,2]D.[-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若集合{1,a,$\frac{b}{a}$}={0,a2,a+b},则a2015+b2016的值为(  )
A.0B.1C.-1D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={x|x<0},B={z|z=$\frac{{m}^{2}x-1}{mx+1}$,x>2},B≠∅,且B⊆A,则实数m的取值范围是{m|m≤-$\frac{\sqrt{2}}{2}$,或m=0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知log0.72m<log0.7(m-1),则m的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的定义域,并用区间表示:
(1)y=$\frac{(x+1)^{2}}{x+1}$-$\sqrt{1-x}$;
(2)y=$\frac{\sqrt{5-x}}{|x|-3}$;
(3)y=$\frac{(x+1)^{0}}{|x|-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=$\left\{\begin{array}{l}{(m+2)x}&{x≤1}\\{{x}^{2}+(4-3m)x+m}&{x>1}\end{array}\right.$,若f(x)在R上单调,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.关于x的不等式x2-ax-a2+1<0的解集为A,若集合A中恰有两个整数,则实数a的取值范围是{a|-$\frac{\sqrt{65}}{5}$≤a<-$\frac{2\sqrt{10}}{5}$,或$\frac{2\sqrt{10}}{5}$<a≤$\frac{\sqrt{65}}{5}$}.

查看答案和解析>>

同步练习册答案