精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形ACDE所在的平面与平面ABC垂直,MCEAD的交点,ACBC,AC=BC.

(1)求证:AM平面EBC;

(2)求直线AB与平面EBC所成角的大小,

(3)求二面角A-BE-C的大小.

【答案】(1)见解析(2)30°(3)60°

【解析】

(1)以点A为原点,以过A点平行于BC的直线为x轴,分别以直线AC和AE为y轴和z轴,建立空间直角坐标系A-xyz,利用向量法能证明平面(2)求出平面EBC的法向量,利用线面角公式求解(3)求平面EAB的法向量,根据向量法求出二面角A-BE-C的大小.

(1)如图所示:

建立空间直角坐标系A-xy,设

所以

,∴.

平面.

(2)∵平面,∴为平面的一个法向量,

,∴,∴

∴直线与平面所成的角的大小为30°.

(3)面的法向量为,面的法向量为

故二面角的大小为60°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x2﹣4|+a|x﹣2|,x∈[﹣3,3].若f(x)的最大值是0,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对城市治安状况的满意度,某部门对城市部分居民的“安全感”进行调查,在调查过程中让每个居民客观地对自己目前生活城市的安全感进行评分,并把所得分作为“安全感指数”,即用区间[0,100]内的一个数来表示,该数越接近100表示安全感越高.现随机对该地区的男、女居民各500人进行了调查,调查数据如表所示:

安全感指数

[0,20)

[20,40)

[40,60)

[60,80)

[80,100]

男居民人数

8

16

226

131

119

女居民人数

12

14

174

122

178

根据表格,解答下面的问题:
(Ⅰ)估算该地区居民安全感指数的平均值;
(Ⅱ)如果居民安全感指数不小于60,则认为其安全感好.为了进一步了解居民的安全感,调查组又在该地区随机抽取3对夫妻进行调查,用X表示他们之中安全感好的夫妻(夫妻二人都感到安全)的对数,求X的分布列及期望(以样本的频率作为总体的概率).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+x﹣lnx,(a>0). (Ⅰ)求f(x)的单调区间;
(Ⅱ)设f(x)极值点为x0 , 若存在x1 , x2∈(0,+∞),且x1≠x2 , 使f(x1)=f(x2),求证:x1+x2>2x0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其左、右焦点分别为,点是坐标平面内一点,且 为坐标原点).

(1)求椭圆的方程;

(2)过点且斜率为的动直线交椭圆于两点,在轴上是否存在定点,使以为直径的圆恒过该点?若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(2)若面DEF与面ABCD所成二面角的大小为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】神舟五号飞船成功完成了第一次载人航天飞行,实现了中国人民的航天梦想,某段时间飞船在太空中运行的轨道是一个椭圆,地球在椭圆的一个焦点上,如图所示,假设航天员到地球最近距离为d1 , 到地球最远距离为d2 , 地球的半径为R,我们想象存在一个镜像地球,其中心在神舟飞船运行轨道的另外一个焦点上,上面住着一个神仙发射某种神秘信号需要飞行中的航天员中转后地球人才能接收到,则神秘信号传导的最短距离为(
A.d1+d2+R
B.d2﹣d1+2R
C.d2+d1﹣2R
D.d1+d2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|3x﹣1|﹣2|x|+2.
(1)解不等式:f(x)<10;
(2)若对任意的实数x,f(x)﹣|x|≤a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)﹣1(ω>0,|φ|<π)的一个零点是 是y=f(x)的图象的一条对称轴,则ω取最小值时,f(x)的单调增区间是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案