精英家教网 > 高中数学 > 题目详情
(本题满分13分)设数列为单调递增的等差数列依次成等比数列.
(Ⅰ)求数列的通项公式
(Ⅱ)若求数列的前项和
(Ⅲ)若,求证:
(1)
(2)
(3)根据,放缩来求和得到证明。

试题分析:解:⑴…3分

…7分


所以
             …………………….13分
点评:解决该试题最重要的是第一步中通项公式的求解,利用等差数列的通项公式,得到数列,然后利用裂项求和得到第二问,裂项法是求和中重要而又常用 方法之一。同时能借助于放缩法得到不等式的证明。第三问是个难点。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

在数列中,如果对任意的,都有为常数),则称数列为比等差数列,称为比公差.现给出以下命题:①若数列满足),则该数列不是比等差数列;②若数列满足,则数列是比等差数列,且比公差;③等比数列一定是比等差数列,等差数列不一定是比等差数列;④若是等差数列,是等比数列,则数列是比等差数列.
其中所有真命题的序号是_________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等差数列{an}满足a2=3,=51(n>3) , = 100,则n的值为
A.8 B.9 C.10D.11

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知数列为等差数列,且
(1)求数列的通项公式;
(2)证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)已知数列是各项均不为的等差数列,公差为为其前项和,且满足.数列满足为数列的前n项和.
(Ⅰ)求数列的通项公式和数列的前n项和
(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列项和满足,等差数列满足
(1)求数列的通项公式
(2)设,数列的前项和为,问的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前项和和通项满足.
(Ⅰ)求数列的通项公式;
(Ⅱ) 求证:
(Ⅲ)设函数,求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义数列,(例如时,)满足,且当)时,.令
(1)写出数列的所有可能的情况;(5分)
(2)设,求(用的代数式来表示);(5分)
(3)求的最大值.(6分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在数列中,
(Ⅰ)证明数列是等比数列;
(II)求数列的前项和
(Ⅲ)证明对任意,不等式成立.

查看答案和解析>>

同步练习册答案