精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(Ⅰ)当时,求的图象在处的切线方程;

(Ⅱ)若函数图象在上有两个不同的交点,求实数的取值范围.

【答案】(Ⅰ)y=2x-1. (Ⅱ)[].

【解析】试题分析】(I),求出的值,利用点斜式求得切线方程.(II),化简得,构造函数,利用导数求得在区间上的极大值为,通过计算可知在区间上的最小值为,由此可用最大值大于零,最小值不大于零列不等式组,求得的取值范围.

试题解析】

(Ⅰ)解 当时,f(x)=2lnx-x2+2x,f′(x)=-2x+2,

切点坐标为(1,1),切线的斜率k=f′(1)=2,

则切线方程为y-1=2(x-1),即y=2x-1.

(Ⅱ)解:由题意可得:2lnx-x2+m=0,令h(x)=2lnx-x2+m,

则h′(x)=-2x=

∵x∈,故h′(x)=0时,x=1.

<x<1时,h′(x)>0;当1<x<e时,h′(x)<0.

故h(x)x=1处取得极大值h(1)=m-1.

=m-2-,h(e)=m+2-e2,h(e)-=4-e2<0,

则h(e)<

∴h(x)在[]上的最小值为h(e).

h(x)在[]上有两个零点的条件是,

解得1<m≤2+

∴实数m的取值范围是[].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,点在椭圆上.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点,直线分别与轴交于点,在轴上,是否存在点,使得无论非零实数怎样变化,总有为直角?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为(

A. 10000立方尺 B. 11000立方尺

C. 12000立方尺 D. 13000立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别是棱的中点,为棱上一点,平面.

(1)证明:中点;

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

1)求频率分布直方图中的值;

2)估计该企业的职工对该部门评分不低于80的概率;

3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国的钨矿资源储量丰富,在全球已经探明的钨矿产资源储量中占比近,居全球首位。中国又属赣州钨矿资源最为丰富,其素有世界钨都之称。某科研单位在研发的钨合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值与这种新合金材料的含量x(单位:)的关系为:, 的二次函数;, .测得部分数据如表.

x(单位:克)

0

1

2

9

y

0

3

1)求y关于x的函数关系式y=

2)求函数的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数,),为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设,直线交曲线两点,是直线上的点,且,当最大时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数有一个极小值点和一个极大值点,求的取值范围;

(2)设,若存在,使得当时, 的值域是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个人下半身长(肚脐至足底)与全身长的比近似为,称为黄金分割比),堪称“身材完美”,且比值越接近黄金分割比,身材看起来越好,若某人着装前测得头顶至肚脐长度为72,肚脐至足底长度为103,根据以上数据,作为形象设计师的你,对TA的着装建议是( )

A.身材完美,无需改善B.可以戴一顶合适高度的帽子

C.可以穿一双合适高度的增高鞋D.同时穿戴同样高度的增高鞋与帽子

查看答案和解析>>

同步练习册答案