精英家教网 > 高中数学 > 题目详情

【题目】2019625日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如表所示:

得分

频数

25

150

200

250

225

100

50

1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求

2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:

①得分不低于 “的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

②每次获赠的随机话费和对应的概率为:

获赠的随机话费(单位:元)

20

40

概率

现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

附:①;②若,则

【答案】12)分布列见解析,

【解析】

(1)先求出,再根据正态分布的知识求出即可;

(2)先求出的所有可能情况元,再求的的分布列及数学期望即可.

1)根据题中所给的统计表,结合题中所给的条件,可以求得

所以

2)根据题意可以得出所得话费的可能值有20406080元,

20元的情况为低于平均值,概率

40元的情况有一次机会获得40元,两次机会获得220元,概率

60元的情况为两次机会,一次40元,一次20元,概率

80元的情况为两次机会,都是40元,概率

所以变量的分布列为:

20

40

60

80

所以其期望为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线过点,倾斜角为,在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的方程为.

1)写出直线的参数方程和曲线的直角坐标方程;

2)若直线与曲线相交于两点,设点,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,底面是边长为6的正三角形,底面,且与底面所成的角为

1)求三棱锥的体积;

2)若的中点,求异面直线所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地要建造一个边长为2(单位:)的正方形市民休闲公园,将其中的区域开挖成一个池塘,如图建立平面直角坐标系后,点的坐标为,曲线是函数图像的一部分,过边上一点在区域内作一次函数)的图像,与线段交于点(点不与点重合),且线段与曲线有且只有一个公共点,四边形为绿化风景区.

1)求证:

2)设点的横坐标为

①用表示两点的坐标;

②将四边形的面积表示成关于的函数,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 分别是线段的中点.

(1)求异面直线所成角的大小;

(2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某贫困县在政府精准扶贫的政策指引下,充分利用自身资源,大力发展养茶业.该县农科所为了对比AB两种不同品种茶叶的产量,在试验田上分别种植了AB两种茶叶各亩,所得亩产数据(单位:千克)如下:

A

B

1)从AB两种茶叶亩产数据中各任取1个,求这两个数据都不低于的概率;

2)从B品种茶叶的亩产数据中任取个,记这两个数据中不低于的个数为,求的分布列及数学期望;

3)根据以上数据,你认为选择该县应种植茶叶A还是茶叶B?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业打算处理一批产品,这些产品每箱100件,以箱为单位销售.已知这批产品中每箱出现的废品率只有或者两种可能,两种可能对应的概率均为0.5.假设该产品正品每件市场价格为100元,废品不值钱.现处理价格为每箱8400元,遇到废品不予更换.以一箱产品中正品的价格期望值作为决策依据.

1)在不开箱检验的情况下,判断是否可以购买;

2)现允许开箱,有放回地随机从一箱中抽取2件产品进行检验.

①若此箱出现的废品率为,记抽到的废品数为,求的分布列和数学期望;

②若已发现在抽取检验的2件产品中,其中恰有一件是废品,判断是否可以购买.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校兴趣小组在如图所示的矩形区域内举行机器人拦截挑战赛,在处按方向释放机器人甲,同时在处按某方向释放机器人乙,设机器人乙在处成功拦截机器人甲.若点在矩形区域内(包含边界),则挑战成功,否则挑战失败.已知米,中点,机器人乙的速度是机器人甲的速度的2倍,比赛中两机器人均按匀速直线运动方式行进,记的夹角为

1)若足够长,则如何设置机器人乙的释放角度才能挑战成功?(结果精确到);

2)如何设计矩形区域的宽的长度,才能确保无论的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域内成功拦截机器人甲?

查看答案和解析>>

同步练习册答案