精英家教网 > 高中数学 > 题目详情

【题目】企业为了监控某种零件的一条流水生产线的产品质量,检验员从该生产线上随机抽取100个零件,测量其尺寸(单位:)并经过统计分析,得到这100个零件的平均尺寸为10,标准差为0.5.企业规定:若,该零件为一等品,企业获利20元;若,该零件为二等品,企业获利10元;否则,该零件为不合格品,企业损失40.

1)在某一时刻内,依次下线10个零件,如果其中出现了不合格品,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查若这10个零件的尺寸分别为9.610.59.810.110.79.410.99.51010.9,则从这一天抽检的结果看,是否需要对当天的生产过程进行检查?

2)将样本的估计近似地看作总体的估计通过检验发现,该零件的尺寸服从正态分布.其中近似为样本平均数,近似为样本方差.

i)从下线的零件中随机抽取20件,设其中为合格品的个数为,求的数学期望(结果保留整数)

ii)试估计生产10000个零件所获得的利润.

附:若随机变量服从正态分布,.

【答案】1)不需要;(2)(i19;(ii145460.

【解析】

(1)根据数据直接判断即可;

(2)i)根据题意先计算出合格品的概率,结合随机变量是服从正态分布,直接用正态分布的期望公式即可;

ii)根据条件计算出一等品、二等品的概率,再计算出一等品和二等品的数量以及不合格的数量,从而可估算出所获得的利润.

解:(1)由于这10个零件的尺寸都在内.所以不需要对当天的生产过程进行检查.

2)(i)因为合格品的尺寸范围为.所以抽取1个零件为合格品的概率为

由题意.得.所以

ii10000个零件中,一等品约为(个),

二等品约为(个),

不合格品约为(个).

生产10000个零件,估计所获得的利润为(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知四边形是菱形,平面平面.

1)求证:平面平面.

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的最大值;

2)若函数存在两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到两点的距离之和为4,点轴上的射影是C.

1)求动点的轨迹方程;

2)过点的直线交点的轨迹于点,交点的轨迹于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的焦点为(其中)是上的一点,且.

(1)求抛物线的方程;

(2)已知为抛物线上除顶点之外的任意一点,在点处的切线与轴交于点,过点的直线交抛物线于两点,设的斜率分别为,求证:成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图像如图所示,两点之间的距离为10,且,若将函数的图像向右平移个单位长度后所得函数图像关于轴对称,则的最小值为( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,讨论函数的单调性.

2)若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,为正三角形,,点在线段的中点,点为线段的中点.

1)在线段上是否存在点,使得平面?若存在,指出点的位置;若不存在,请说明理由.

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点是椭圆上一点,的等差中项.

)求椭圆的标准方程;

)若为椭圆的右顶点,直线轴交于点,过点的另一直线与椭圆交于两点,且,求直线的方程.

查看答案和解析>>

同步练习册答案