精英家教网 > 高中数学 > 题目详情
5.命题:?x∈[0,$\frac{π}{2}$],sinx+cosx≥2的否定是(  )
A.?x∈[0,$\frac{π}{2}$],sinx+cosx<2B.?x∈[0,$\frac{π}{2}$],sinx+cosx≥2
C.?x∈[0,$\frac{π}{2}$],sinx+cosx≤2D.?x∈[0,$\frac{π}{2}$],sinx+cosx<2

分析 利用含量词的命题的否定形式:将?改为?,将结论否定,写出命题的否定.

解答 解:据含量词的命题的否定形式得到:
命题命题:?x∈[0,$\frac{π}{2}$],sinx+cosx≥2的否定是”
?x∈[0,$\frac{π}{2}$],sinx+cosx<2”
选:D.

点评 本题考查含量词的命题的否定形式是:“?”与“?”互换,结论否定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列给出的赋值语句正确的是(  )
A.6=AB.M=-MC.B=A=2D.x+5y=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{m}$=(sin2x,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{n}$=($\frac{1}{2}$,cos2x),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)试用五点作图法画出函数f(x)在一个周期内的图象(要求列表);
(Ⅱ)求方程f(x)=m(0<m<1)在[-$\frac{π}{12}$,$\frac{35π}{12}$]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:(2x-1)n=a0+a1x+a2x2+…+anxn(n∈N*,n为常数).
(1)求|a0|+|a1|+|a2|+…+|an|;
(2)我们知道二项式(1+x)n的展开式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn.若该等式两边对x求导得:n(1+x)n-1=Cn1+2Cn2x+3Cn3x2…+nCnnxn-1,令x=1,可得Cn1+2Cn2+3Cn3…+nCnn=n•2n-1.利用此方法解答以下问题:
①求1a1+2a2+3a3+…+nan
②求12a1+22a2+32a3+…+n2an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的前n项和为Sn,若$\frac{{S}_{3}}{{S}_{6}}$=$\frac{1}{3}$,则$\frac{S_6}{{{S_{12}}}}$的值为(  )
A.$\frac{10}{3}$B.$\frac{3}{10}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列{an}满足a1=1,且对任意的m,n∈N*,都有am+n=am+an+mn,则$\frac{1}{a_1}$+$\frac{1}{a_2}$+$\frac{1}{a_3}$+…+$\frac{1}{{{a_{2015}}}}$=(  )
A.$\frac{4028}{2015}$B.$\frac{4030}{2016}$C.$\frac{2013}{2014}$D.$\frac{2012}{2013}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.△ABC的内角A,B,C所对边的长分别是a,b,c,若$C=\frac{π}{3},a=1,b=2$,则c=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知扇形的半径为R,周长为3R,则扇形的圆心角等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知实数p,q,r满足:p+q+r=m,且p2+q2+r2=m(m>0).
(1)当r=$\frac{1}{2}$,求m的取值范围;
(2)当m=1,且p,q都不为0,求$\frac{1}{p}$+$\frac{1}{q}$的取值范围;
(3)求m的取值范围.

查看答案和解析>>

同步练习册答案