精英家教网 > 高中数学 > 题目详情

(本小题满分14分)(注意:在试题卷上作答无效)

已知椭圆的左、右焦点分别为,若以为圆心,为半径作圆,过椭圆上一点作此圆的切线,切点为,且的最小值不小于为

(1)求椭圆的离心率的取值范围;

(2)设椭圆的短半轴长为,圆轴的右交点为,过点作斜率为的直线与椭圆相交于两点,若,求直线被圆截得的弦长的最大值.

 

 

【答案】

(1);(2)

【解析】(1)根据圆的切线长公式可得,显然当取得最小值时取得最小值,而,再根据的最小值为,可建立关于a,c的不等式,从而求出e的取值范围.

(2)设直线l的方程为,然后与椭圆方程联立消y得关于x的一元二次方程,因为,所以再结合直线方程和韦达定理,建立关于k与a的等式关系.从而在直线方程中用a表示k,再把最终化成关于c的函数表达式,再利用率心率e的范围,确定出c的范围,求函数最值即可.

(1)依题意设切线长

∴当且仅当取得最小值时取得最小值,

,......2分

从而解得,故离心率的取值范围是;......6分

(2)依题意点的坐标为,则直线的方程为, 联立方程组  

,设,则有,代入直线方程得

,又

...... 10分

,直线的方程为,圆心到直线的距离,由图象可知

,所以.14分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案