精英家教网 > 高中数学 > 题目详情

【题目】已知函数,直线

)求函数的极值;

)求证:对于任意,直线都不是曲线的切线;

)试确定曲线与直线的交点个数,并说明理由.

【答案】)极小值,无极大值;()见解析;()当时,曲线与直线没有交点,而当时,曲线与直线有且仅有一个交点.

【解析】试题()先求出函数定义域再求导,得令,解得的值,画出 当变化时,的变化情况表所示,可得函数的单调区间,从而得到函数有极小值,无极大值

)对于是否存在问题,先假设存在某个,使得直线与曲线相切,先设出切点,再求

求得切线满足斜率,又由于过点,可得方程显然无解,所以假设不成立. 所以对于任意,直线都不是曲线的切线.

)写出曲线与直线的交点个数等价于方程的根的个数”.

由分离系数法得,令,得,其中,且.考察函数,其中,求导得到函数的单调性,从而得到方程根的情况,命题得证

试题解析:函数定义域为

求导,得

,解得

变化时,的变化情况如下表所示:

所以函数的单调增区间为,单调减区间为

所以函数有极小值,无极大值.

)证明:假设存在某个,使得直线与曲线相切,

设切点为,又因为

所以切线满足斜率,且过点,所以

,此方程显然无解,所以假设不成立.

所以对于任意,直线都不是曲线的切线.

)解:曲线与直线的交点个数等价于方程的根的个数”.

由方程,得.

,则,其中,且.考察函数,其中

因为时,所以函数单调递增,且.

而方程中,,且.

所以当时,方程无根;当时,方程有且仅有一根,

故当时,曲线与直线没有交点,而当时,曲线与直线有且仅有一个交点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,以2为半径的半圆弧所在平面垂直于矩形所在平面,是圆弧上异于的点.

(1)证明:平面平面

(2)当四棱锥的体积最大为8时,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是(

A. 7050 B. 7067 C. 7550 D. 7567

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),在等腰梯形中, 是梯形的高, ,现将梯形沿 折起,使,得一简单组合体如 图(2)示,已知 分别为 的中点.

(1)求证: 平面

(2)若直线与平面所成角的正切值为,求平面与平面所成的锐二面角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数与函数的图象在点(00)处有相同的切线.

Ⅰ)求a的值;

Ⅱ)设,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①函数的图象与直线可能有两个不同的交点;

②函数与函数是相等函数;

③对于指数函数与幂函数,总存在,当时,有成立;

④已知是方程的根,是方程的根,则.

其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若,求的单调区间;

(2)当时,记的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且.

(1)确定的解析式;

2)判断并证明上的单调性;

3)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2+(a+1)x+a2(a∈R),若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和.

(1)求g(x)和h(x)的解析式;

(2)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求f(1)的取值范围.

查看答案和解析>>

同步练习册答案