已知是函数的一个极值点。
(Ⅰ)求;
(Ⅱ)若直线与函数的图象有3个交点,求的取值范围;
(Ⅲ)设=()++(6-+2(),,若
=0有两个零点,且,试探究值的符号
本题主要考查函数、导数、不等式等基础知识,考查推理论证能力、运算求解能力,考查
数形结合思想、化归与转化思想、分类与整合思想。
解:(Ⅰ)因为=
所以=0,=5------------------------------------3分
(Ⅱ)由(Ⅰ)知()
===------------------------5分
当时,<0,单调递减;
当或时,>0,单调递增.
的极大值为==,
极小值为==,
又时,,时, -----------------7分
结合图像可知:当且仅当时
直线与函数的图象有3个交点
< ------------------------------------9分
(III)的符号为正. 证明如下:
因为=+()++(6-+2
=有两个零点,则有
,
两式相减得
即,
于是
-------------------------11分
①当时,令,则,且.
设,
则,
则在上为增函数.而,所以,
即. 又因为,所以. ------12分
②当时,同理可得:. --------------------------13分
综上所述:的符号为正------------------------------------14分
科目:高中数学 来源:2014届四川达州第一中学高二下学期第一次月考文科数学试卷(解析版) 题型:解答题
已知是函数的一个极值点,其中
(1)求与的关系式;
(2)求的单调区间;
(3)设函数函数g(x)= ;试比较g(x)与的大小。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年山东师大附中高三12月(第三次)模拟检测理科数学试卷(解析版) 题型:解答题
(本题满分12分)已知是函数的一个极值点.
(Ⅰ)求的值;
(Ⅱ)当,时,证明:
查看答案和解析>>
科目:高中数学 来源:2013届浙江省宁波万里国际学校高二下期中文科数学试卷(解析版) 题型:解答题
已知是函数的一个极值点,其中,
(1)求与的关系式;
(2)求的单调区间;
(3)当时,函数的图象上任意一点的切线斜率恒大于,求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题
(本小题满分15分)
已知是函数的一个极值点,其中。
(Ⅰ)求与的关系表达式;
(Ⅱ)求的单调区间;
(Ⅲ)当时,函数的图象上任意一点的切线斜率恒大于,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2013届广东省高二下学期第一次月考理科数学试卷 题型:解答题
(本小题满分14分)
已知是函数的一个极值点,其中,
(1)求与的关系式;
(2)求的单调区间;
(3)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com