【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面,,,,分别为,的中点,点在线段上.
(Ⅰ)求证:平面.
(Ⅱ)若为的中点,求证:平面.
(Ⅲ)如果直线与平面所成的角和直线与平面所在的角相等,求的值.
【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ).
【解析】
试题分析:
(Ⅰ)由平行四边形的性质可得,有中点的性质有,则,
由面面垂直的性质定理可得,结合线面垂直的判断定理可得平面.
(Ⅱ)由三角形中位线的性质可得,则平面,同理,得平面,利用面面平行的判断定理可得平面平面,则平面.
(Ⅲ)由题意可知,,两两垂直,以,,分别为轴,轴和轴建立空间直角坐标系,结合几何关系点的坐标可得平面的法向量,平面的法向量为,由于直线与平面所成的角和此直线与平面所成的角相等,据此结合空间向量计算可得.
试题解析:
(Ⅰ)证明:在平行四边形中,
∵,,,
∴,∵,分别为,的中点,
∴,∴,
∵侧面底面,且,
∴底面,∴,
又∵,平面,平面,
∴平面.
(Ⅱ)证明:∵为的中点,为的中点,
∴,又∵平面,平面,
∴平面,同理,得平面,
又∵,平面,平面,
∴平面平面,又∵平面,
∴平面.
(Ⅲ)解:∵底面,,
∴,,两两垂直,故以,,分别为轴,轴和轴建立如图空间直角坐标系,
则,,,,,,
所以,,,
设,则,
∴,,
易得平面的法向量,
设平面的法向量为,则:
,即,令,得,
∴直线与平面所成的角和此直线与平面所成的角相等,
∴,即,
∴,解得或(舍去),
故.
科目:高中数学 来源: 题型:
【题目】已知二次函数和函数,
(1)若为偶函数,试判断的奇偶性;
(2)若方程有两个不等的实根,则
①试判断函数在区间上是否具有单调性,并说明理由;
②若方程的两实根为求使成立的的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数,向量, ,经过点,以为方向向量的直线与经过点,以为方向向量的直线交于点,其中.
()求点的轨迹方程,并指出轨迹.
()若点,当时, 为轨迹上任意一点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)当m=-1时,求A∪B;
(2)若AB,求实数m的取值范围;
(3)若A∩B=,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,为等边三角形,分别为的中点,为的中点,,将沿折起到的位置,使得平面平面,
为的中点,如图2.
(1)求证:平面;
(2)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称函数是上的有界函数,其中称为函数的上界.已知函数.
(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(2)若函数在上是以3为上界的有界函数,求实数的取值范围;
(3)若,函数在上的上界是,求的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.
(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com