【题目】已知函数(kR),且满足f(﹣1)=f(1).
(1)求k的值;
(2)若函数y=f(x)的图象与直线没有交点,求a的取值范围;
(3)若函数,x[0,log23],是否存在实数m使得h(x)最小值为0,若存在,求出m的值;若不存在,请说明理由.
【答案】(1)(2)(﹣∞,0](3)存在m=﹣1得h(x)最小值为0
【解析】
(1)化简f(﹣1)=f(1),即得k的值;(2)先化简方程,再研究函数单调性,最后根据单调性求函数值域即得a的取值范围; (3)先化简函数h(x)=4x+m×2x,再换元转化为二次函数,最后根据二次函数性质求最小值,由最小值为0解得结果.
解:(1)∵f(﹣1)=f(1),
即∴
(2)由题意知方程即方程无解,
令,则函数y=g(x)的图象与直线y=a无交点
∵
任取x1、x2R,且x1<x2,则,
∴.∴,
∴g(x)在(﹣∞,+∞)上是单调减函数.
∵,∴.
∴a的取值范围是(﹣∞,0].
(3)由题意h(x)=4x+m×2x,x [0,log23],
令t=2x [1,3],φ(t)=t2+mt,t [1,3],
∵开口向上,对称轴.
当,,m=﹣1
当,,m=0(舍去)
当,即m<﹣6,φ(t)min=φ(3)=9+3m=0,m=﹣3(舍去)
∴存在m=﹣1得h(x)最小值为0
科目:高中数学 来源: 题型:
【题目】对于函数,若存在实数对,使得等式对定义域中的任意都成立,则称函数是“型函数”.
(1)若函数是“型函数”,且,求出满足条件的实数对;
(2)已知函数.函数是“型函数”,对应的实数对为,当时,.若对任意时,都存在,使得,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(+mx)(m∈R).
(Ⅰ)是否存在实数m,使得函数f(x)为奇函数,若存在求出m的值,若不存在,说明理由;
(Ⅱ)若m为正整数,当x>0时,f(x)>lnx++,求m的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线的参数方程为(t为参数),直线和圆C交于A,B两点,P是圆C上不同于A,B的任意一点.
(1)求圆心的极坐标;(2)求△PAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其图象与x轴交于两点,且.
(1)证明: ;
(2)证明: ;(其中为的导函数)
(3)设点C在函数的图象上,且△ABC为等边三角形,记,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区某农产品近几年的产量统计如下表:
(1)根据表中数据,建立关于的线性回归方程;
(2)若近几年该农产品每千克的价格(单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.
①根据(1)中所建立的回归方程预测该地区年该农产品的产量;
②当为何值时,销售额最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com