精英家教网 > 高中数学 > 题目详情
11.已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n,n∈N*,数列{an}满足$\frac{1}{{{a_{n+1}}}}={f^′}({\frac{1}{a_n}})$,且a1=4.
(1)求数列{an}的通项公式;
(2)记${b_n}=\sqrt{{a_n}{a_{n+1}}}$,求数列{bn}的前n项和Tn
(3)并求出Tn的最小值.

分析 (1)求出f(x)的导数,由条件可得a,b,可得f(x)的解析式,再由累加法,运用等差数列的求和公式,即可得到数列的通项;
(2)化简bn=2($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),运用裂项相消求和,即可得到所求;
(3)判断Tn=$\frac{4n}{2n+1}$=2-$\frac{2}{2n+1}$在n∈N*上单调递增,即可得到所求最小值.

解答 解:(1)f(x)的导数为f′(x)=2ax+b.
由题意知f′(0)=b=2n,16n2a-4nb=0,
∴a=$\frac{1}{2}$,b=2n,∴f(x)=$\frac{1}{2}$x2+2nx,n∈N*
又数列{an}满足$\frac{1}{{{a_{n+1}}}}={f^′}({\frac{1}{a_n}})$,f′(x)=x+2n,
∴$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$+2n,∴$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=2n.
由叠加法可得$\frac{1}{{a}_{n}}$-$\frac{1}{4}$=2+4+6+…+2(n-1)=n2-n,化简可得an=$\frac{4}{(2n-1)^{2}}$(n≥2).
当n=1时,a1=4也符合上式,
∴an=$\frac{4}{(2n-1)^{2}}$(n∈N*).
(2)∵${b_n}=\sqrt{{a_n}{a_{n+1}}}$=$\frac{4}{(2n-1)(2n+1)}$=2($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=b1+b2+…+bn=$\sqrt{{a}_{1}{a}_{2}}$+$\sqrt{{a}_{2}{a}_{3}}$+…+$\sqrt{{a}_{n}{a}_{n+1}}$
=2(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=2(1-$\frac{1}{2n+1}$)=$\frac{4n}{2n+1}$.
故数列{bn}的前n项和Tn=$\frac{4n}{2n+1}$ (n∈N*);
(3)Tn=$\frac{4n}{2n+1}$=2-$\frac{2}{2n+1}$在n∈N*上单调递增,
则Tn的最小值为T1=$\frac{4}{3}$.

点评 本题考查数列的通项的求法,注意运用累加法和等差数列的求和公式,考查数列的求和方法:裂项相消求和,考查数列的单调性及运用:求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知抛物线C1:y2=2px(p>0)与椭圆C2:x2+2y2=m2(m>0)的一个交点为P(1,t),点F是抛物线C1的焦点.且|PF|=$\frac{3}{2}$.
(Ⅰ)求p,t,m的值;
(Ⅱ)设O为坐标原点,椭圆C2上是否存在点A(不考虑点A为C2的顶点),使得过点O作线段OA的垂线与抛物线C1交于点B,直线AB交y轴于点E,满足∠0AE=∠E0B?若存在,求点A的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}中,a3=$\frac{7}{6}$,a7=$\frac{15}{14}$,且{$\frac{1}{{a}_{n}-1}$}是等差数列,则a5=(  )
A.$\frac{10}{9}$B.$\frac{11}{10}$C.$\frac{12}{11}$D.$\frac{13}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题错误的是(  )
A.命题“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”
B.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
C.命题p;存在x0∈R,使得x02+x0+1<0,则¬p;任意x∈R,使得x2+x+1≥0
D.“am2<bm2”是“a<b”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=asin(2ωx+$\frac{π}{6}$)+$\frac{a}{2}$+b(x∈R,a>0,ω>0)的最小正周期为π,函数f(x)的最大值为$\frac{7}{4}$,最小值为$\frac{3}{4}$.
(1)求ω、a、b的值;
(2)指出f(x)的单调递增区间;
(3)若函数f(x)满足方程f(x)=a(0.75<a<1.5),求在[0,2π]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)定义域为R,则下列命题:
①若y=f(x)为偶函数,则y=f(x+2)的图象关于y轴对称.
②若y=f(x+2)为偶函数,则y=f(x)关于直线x=2对称.
③若函数y=f(2x+1)是偶函数,则y=f(2x)的图象关于直线$x=\frac{1}{2}$对称.
④若f(x-2)=f(2-x),则则y=f(x)关于直线x=2对称.
⑤函数y=f(x-2)和y=f(2-x)的图象关于x=2对称.
其中正确的命题序号是(  )
A.①②④B.①③④C.②③⑤D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知各项不为零的数列{an}的前n项和为Sn,且满足Sn=a1(an-1);数列{bn}满足anbn=log2an,数列{bn}的前n项和Tn
(Ⅰ)求an,Tn
(Ⅱ)若?n∈N+,不等式t2+2λt+3<Tn成立,求使关于t的不等式有解的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某种游戏中,一只“电子狗”从棱长为1的正方体ABCD-A1B1C1D1的顶点A出发,沿棱向前爬行,每爬完一条棱称为“爬完一段”,它的爬行的路线是AB→BB1→B1C1…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(其中i是正整数);则该“电子狗”爬完2014段后与起始点A的距离是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sinx+cosx=$\frac{1}{5}$.
(1)求sinx-cosx的值;
(2)求$\frac{si{n}^{4}x+co{s}^{4}x+si{n}^{2}xco{s}^{2}x}{2-sin2x}$的值.

查看答案和解析>>

同步练习册答案