精英家教网 > 高中数学 > 题目详情
3.已知$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,D(0,-$\frac{\sqrt{2}}{3}$),直线l过D,且与椭圆交于M,N两点,证明:以MN为直径的圆过定点.

分析 分类讨论,证明以MN为直径的圆过定点C(0,$\sqrt{2}$).

解答 证明:斜率存在时,设直线的方程为y=kx-$\frac{\sqrt{2}}{3}$
与椭圆方程联立,消去y,可得(1+2k2)x2-$\frac{4\sqrt{2}}{3}$kx-$\frac{32}{9}$=0
设M(x1,y1),N(x2,y2),∴x1x2=-$\frac{32}{9(1+2{k}^{2})}$,x1+x2=$\frac{4\sqrt{2}k}{3(1+2{k}^{2})}$,
∴y1y2=$\frac{2-36{k}^{2}}{9(1+2{k}^{2})}$,y1+y2=$\frac{-2\sqrt{2}}{3(1+2{k}^{2})}$,
设上顶点为C(0,$\sqrt{2}$),则$\overrightarrow{CM}•\overrightarrow{CN}$=(x1,y1-$\sqrt{2}$)•(x2,y2-$\sqrt{2}$)=x1x2+(y1-$\sqrt{2}$)•(y2-$\sqrt{2}$)
=x1x2+y1y2-$\sqrt{2}$(y1+y2)+2=-$\frac{32}{9(1+2{k}^{2})}$+$\frac{2-36{k}^{2}}{9(1+2{k}^{2})}$-$\sqrt{2}$•$\frac{-2\sqrt{2}}{3(1+2{k}^{2})}$+2=0
∴以MN为直径的圆过定点C(0,$\sqrt{2}$).
斜率不存在时,显然成立.

点评 本题考查椭圆的方程与性质,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知O是坐标原点,F是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的一个焦点,过F且与x轴垂直的直线与椭圆交于M,N两点,则cos∠MON的值为(  )
A.$\frac{5}{13}$B.-$\frac{5}{13}$C.$\frac{2\sqrt{13}}{13}$D.-$\frac{2\sqrt{13}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知F1、F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,椭圆上一点M满足△MF1F2的周长为4+2$\sqrt{3}$,过椭圆上顶点与右顶点的直线与直线4x-2y+5=0垂直.
(1)求椭圆C的方程;
(2)若直线l交椭圆C于A,B两点,以AB为直径的圆过原点,求弦长|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知:一个二次函数的图象与x轴的交点为(-1,0),(3,0),与y轴的交点为(0,3).求这个二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.作出下列函数一个周期的图象,并指出振幅、周期和初相.
(1)y=3sin($\frac{1}{2}$x+$\frac{π}{6}$);
(2)y=$\frac{1}{2}$sin(3x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.log1000.1=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直线l过直线2x+y+8=0和直线x+y+3=0的交点,且垂直于直线4x+14y-1=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F1、F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2,则e1•e2+1的取值范围为(  )
A.(1,+∞)B.($\frac{4}{3}$,+∞)C.($\frac{6}{5}$,+∞)D.($\frac{10}{9}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数y=x2与y=$(\frac{1}{2})^{x-2}$的图象交点为(x0,y0),则x0所在区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

同步练习册答案