【题目】某小组共10人,利用假期参加义工活动,已知参加义工活动1次的有2人,2次的有4人,3次的有4人.现从这10人中随机选出2人作为该组代表参加座谈会.
(1)设为事件“选出的2人参加义工活动次数之和为4”,求事件发生的概率;
(2)设为选出的2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】某中学从参加高一年级上学期期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)估计这次考试的及格率(60分及以上为及格).
(2)从成绩是70分以上(包括70分)的学生中选一人,求选到第一名学生的概率(第一名学生只一人).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药(单位:微克)的统计表:
(1)令,利用给出的参考数据求出关于的回归方程.(,精确到0.1)
参考数据:,,
其中,
(2)对于某种残留在蔬菜上的农药,当它的残留量不高于20微克时对人体无害,为了放心食用该蔬菜,请估计至少需用用多少千克的清水清洗1千克蔬菜?(精确到0.1,参考数据)
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程为椭圆的参数方程为在以坐标原点为极点, 轴正半轴为极轴建立的极坐标系中,点的坐标为.
(1)将点的坐标化为直角坐标系下的坐标,椭圆的参数方程化为普通方程;
(2)直线与椭圆交于, 两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,( 为常数)
(1)若在处的切线方程为(为常数),求的值;
(2)设函数的导函数为,若存在唯一的实数,使得与同时成立,求实数的取值范围;
(3)令,若函数存在极值,且所有极值之和大于,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“一带一路”国际合作高峰论坛圆满落幕了,相关话题在网络上引起了网友们的高度关注,为此,21财经APP联合UC推出“一带一路”大数据微报告,在全国抽取的70千万网民中(其中为高学历)有20千万人对此关注(其中为高学历).
(1)根据以上统计数据填下面列联表;
(2)根据列联表,用独立性检验的方法分析,能否有的把握认为“一带一路”的关注度与学历有关系?
高学历(千万人) | 不是高学历(千万人) | 合计 | |
关注 | |||
不关注 | |||
合计 |
参考公式: 统计量的表达式是,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区对市民进行“经常使用共享单车与年龄关系”的调查统计,若将单车用户按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,抽取一个容量为200的样本,将一周内使用的次数为6次或6次以上的称为“经常使用单车用户”。使用次数为5次或不足5次的称为“不常使用单车用户”,已知“经常使用单车用户”有120人,其中是“年轻人”,已知“不常使用单车用户”中有是“年轻人”.
(1)请你根据已知的数据,填写下列列联表:
年轻人 | 非年轻人 | 合计 | |
经常使用单车用户 | |||
不常使用单车用户 | |||
合计 |
(2)请根据(1)中的列联表,计算值并判断能否有的把握认为经常使用共享单车与年龄有关?
(附:
当时,有的把握说事件与有关;当时,有的把握说事件与有关;当时,认为事件与是无关的)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com