精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知直线与双曲线交于A,B两点,且点A的横坐标为4.

(1)求的值及B点坐标;

(2)结合图形,直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.

【答案】(1)k=8, B(-4,-2);(2)x>4或-4<x<0

【解析】

(1)将交点A的横坐标代入直线解析式中求出对应的y的值,即为A的纵坐标,确定出A的坐标,将A的坐标代入反比例函数解析式中,即可求出k的值,从而求得反比例函数的解析式;

(2)由函数的图象和交点坐标即可求得干比例函数的值大于一次函数的值的x的取值范围.

(1)因为直线与双曲线交于A,B两点且点A的横坐标为4,

代入直线解析式得:

所以A点的坐标为

代入反比例解析式得:解得

所以反比例函数的解析式为,并根据图像的对称性可得.

(2 )因为由图像可知:当

反比例函数的值大于一次函数的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;

(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明:△ABC是等边三角形的充要条件是a2+b2+c2=ab+bc+ac(其中a,b,c△ABC的三条边).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 与抛物线交于 两点,记抛物线在 两点处的切线 的交点为

(I)求证:

(II)求点的坐标( 表示);

)若,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD中,PD⊥底面ABCD,AD∥BC,AC⊥DB,∠CAD=60°,AD=2,PD=1.

(1)证明:AC⊥BP;
(2)求二面角C﹣AP﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内圆心为的圆的方程为,点是圆上的动点,点是平面内任意一点,若线段的垂直平分线交直线于点,则点的轨迹可能是_________.(请将下列符合条件的序号都填入横线上)

①椭圆;②双曲线;③抛物线;④圆;⑤直线;⑥一个点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三年级期中考试的学生中随机统计了40名学生的政治成绩,40名学生的成绩全部在40分至100分之间,据此绘制了如图所示的样本频率分布直方图.

(1)求成绩在[80,90的学生人数;

(2)从成绩大于等于80分的学生中随机选2名学生,求至少有1 名学生成绩在[90,100]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

(1)讨论的单调区间和极值;

(2)将函数的图象向下平移1个单位后得到的图象,且为自然对数的底数)和是函数的两个不同的零点,求的值并证明:

查看答案和解析>>

同步练习册答案