精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知点是动点,且的三边所在直线的斜率满足
(1)求点的轨迹的方程;
(2)若是轨迹上异于点的一个点,且,直线交于点,问:是否存在点,使得的面积满足?若存在,求出点的坐标;若不存在,说明理由.
(1)),(2)

试题分析:(1)点的轨迹的方程,就是找出点横坐标与纵坐标的关系式,而条件中只有点为未知,可直接利用斜率公式化简,得点的轨迹的方程为,求出轨迹的方程后需结合变形过程及观察图像进行去杂,本题中分母不为零是限制条件,(2)本题难点在于对条件的转化,首先条件说明的是,其次条件揭示的是,两者结合转化为条件,到此原题就转化为:已知斜率为的过点直线被抛物线截得弦长为,求点的坐标.
试题解析:

(1)设点为所求轨迹上的任意一点,则由得,
,整理得轨迹的方程为).  3分
(2):学设可知直线
,故,即,   5分
直线OP方程为: ①;直线QA的斜率为:
∴直线QA方程为:,即 ②
联立①②,得,∴点M的横坐标为定值.       8分
,得到,因为,所以
,得,∴的坐标为
∴存在点P满足的坐标为. 10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,设左顶点为A,上顶点为B且,如图.

(1)求椭圆的方程;
(2)若,过的直线交椭圆于两点,试确定的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点,曲线C是使为定值的点的轨迹,曲线过点.
(1)求曲线的方程;
(2)直线过点,且与曲线交于,当的面积取得最大值时,求直线的方程;
(3)设点是曲线上除长轴端点外的任一点,连接,设的角平分线交曲线的长轴于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为.
(I)求椭圆的方程;
(II)设直线(直线不重合),若均与椭圆相切,试探究在轴上是否存在定点,使点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知抛物线,设点为抛物线上的动点(异于顶点),连结并延长交抛物线于点,连结并分别延长交抛物线于点,连结,设的斜率存在且分别为.

(1)若,求
(2)是否存在与无关的常数,是的恒成立,若存在,请将表示出来;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若一个动点到两个定点的距离之差的绝对值等于8,则动点M的轨迹方程为 (    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点到准线的距离是                  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线的焦点的直线交抛物线于两点,且在直线上的射影分别是,则的大小为               .

查看答案和解析>>

同步练习册答案