精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB="A" A1,∠BA A1=60°.

(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C所成角的正弦值。

(1)取AB的中点O,连接,因为CA=CB,所以,由于AB="A" A1,∠BA A1=600,所以,所以平面,因为平面,所以AB⊥A1C;
(2)以O为原点,OA所在直线为x轴,所在直线为y轴建立如图直角坐标系,,则,设为平面的法向量,则,所以为平面的一个法向量,所以直线A1C 与平面BB1C1C所成角的正弦值.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,在多面体ABCDEFG中,平面ABC∥平面DEFGAD⊥平面DEFGBAACEDDGEFDG,且AC=1,ABEDEF=2,ADDG=4.
 
(1)求证:BE⊥平面DEFG
(2)求证:BF∥平面ACGD
(3)求二面角FBCA的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等腰梯形ABCD中,ADBCADBC,∠ABC=60°,NBC的中点,将梯形ABCDAB旋转90°,得到梯形ABCD′(如图).

(1)求证:AC⊥平面ABC′;
(2)求证:CN∥平面ADD′;
(3)求二面角A-CN-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ)若点的中点,求证:平面
(II)试问点在线段上什么位置时,二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为2的正方形中,点的中点,点的中点,将△、△分别沿折起,使两点重合于点,连接

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直棱柱

(I)证明:
(II)求直线所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P—ABCD中,为边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,,E为PD点上一点,满足

(1)证明:平面ACE平面ABCD;
(2)求直线PD与平面ACE所成角正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。

(1)请在线段CE上找到一点F,使得直线BF∥平面ACD,并证明;
(2)求平面BCE与平面ACD所成锐二面角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长是2的正方体-中,分别为的中点. 应用空间向量方法求 解下列问题.

(1)求EF的长
(2)证明:平面
(3)证明: 平面.

查看答案和解析>>

同步练习册答案