精英家教网 > 高中数学 > 题目详情

【题目】拿破仑为人好学,是法兰西科学院院士,他对数学方面很感兴趣,在行军打仗的空闲时间,经常研究平面几何。他提出了著名的拿破仑定理:以三角形各边为边分别向外(内)侧作等边三角形,则它们的中心构成一个等边三角形。如图所示,以等边的三条边为边,向外作个正三角形,取它们的中心,顺次连接,得到,图中阴影部分为的公共部分。若往中投掷一点,则该点落在阴影部分内的概率为( )

A. B. C. D.

【答案】A

【解析】

设等边△GEI的边长为3a,则△DFH的边长为6a,M,N分别为EIAB,AC的交点,等边△AMN的边长为a,分别求出阴影部分的面积与△DFH的面积,由概率比是面积比得答案.

设等边△GEI的边长为3a,则△DFH的边长为6a,等边△AMN的边长为a,阴影部分的面积S阴影=SEGI﹣3SAMN由概率比为面积比可得:往△DFH中投掷一点,则该点落在阴影部分内的概率为P=

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现行的个税法修正案规定:个税免征额由原来的2000元提高到3500元,并给出了新的个人所得税税率表:

全月应纳税所得额

税率

不超过1500元的部分

3%

超过1500元至4500元的部分

10%

超过4500元至9000元的部分

20%

超过9000元至35000元的部分

25%

……

例如某人的月工资收入为5000元,那么他应纳个人所得税为:(元).

(Ⅰ)若甲的月工资收入为6000元,求甲应纳的个人收的税;

(Ⅱ)设乙的月工资收入为元,应纳个人所得税为元,求关于的函数;

(Ⅲ)若丙某月应纳的个人所得税为1000元,给出丙的月工资收入.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是圆上的任意一点,是过点且与轴垂直的直线,是直线轴的交点,点在直线上,且满足.当点在圆上运动时,记点的轨迹为曲线.

(1)求曲线的方程;

(2)已知直线与曲线交于两点,点关于轴的对称点为,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=2,AD=1,MAB的中点,将△ADM沿DM翻折.在翻折过程中,当二面角ABCD的平面角最大时,其正切值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是一个的方格表,在每一个小方格内各填一个正整数.中的一个方格表的所有数的和为10的倍数,则称其为“好矩形”;若中的一个的小方格不包含于任何一个好矩形,则称其为“坏格”.中坏格个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】水果的价格会受到需求量和天气的影响.某采购员定期向某批发商购进某种水果,每箱水果的价格会在当日市场价的基础上进行优惠,购买量越大优惠幅度越大,采购员通过对以往的10组数据进行研究,发现可采用来作为价格的优惠部分(单位:元/箱)与购买量(单位:箱)之间的回归方程,整理相关数据得到下表(表中):

(1)根据参考数据,

①建立关于的回归方程;

②若当日该种水果的市场价为200元/箱,估算购买100箱该种水果所需的金额(精确到0.1元).

(2)在样本中任取一点,若它在回归曲线上或上方,则称该点为高效点.已知这10个样本点中,高效点有4个,现从这10个点中任取3个点,设取到高效点的个数为,求的数学期望.

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是平面内凸三十五边形的35个顶点,且中任何两点之间的距离不小于 . 证明:从这35个点中可以选出五个点,使得这五个点中任意两点之间的距离不小于3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一布袋中装有个小球,甲,乙两个同学轮流且不放回的抓球,每次最少抓一个球,最多抓三个球,规定:由乙先抓,且谁抓到最后一个球谁赢,那么以下推断中正确的是( )

A. ,则乙有必赢的策略B. ,则甲有必赢的策略

C. ,则甲有必赢的策略D. ,则乙有必赢的策略

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入的m=1,则输出数据的总个数为(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

同步练习册答案