【题目】已知直线与椭圆交于、两点,为坐标原点.
(1)若直线斜率为1,过椭圆的右焦点,求弦的长;
(2)若,且为锐角,求直线斜率的取值范围.
【答案】(1);(2).
【解析】
(1)联立直线方程和椭圆方程,利用弦长公式求得弦AB的长;
(2)直线l方程为y=kx+2,A(x1,y1),B(x2,y2),与椭圆联立,注意到交于不同的两点A、B,△>0且∠AOB为锐角,转化为利用韦达定理,代入化简,求直线l的斜率k的取值范围.
(1)由题意知,右焦点F2(,0),则直线l的方程为y=x﹣,
联立,得5x2﹣x+8=0.
设A(x1,y1),B(x2,y2),
则,
∴|AB|;
(2)若,则l的方程为y=kx+2,设A(x1,y1),B(x2,y2).
联立
∴,
由△=(16k)2﹣4(1+4k2)12>0,16k2﹣3(1+4k2)>0,4k2﹣3>0,得.①
又∠AOB为锐角,
∴
又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4
∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4
∴.②
综①②可知,
∴k的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知椭圆()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆的标准方程;
(2)设为椭圆的左焦点,直线,为椭圆上任意一点,证明:点到的距离是点到距离的倍.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点.
(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,试问在线段PC上是否存在点M,使二面角M-BO-C的大小为30°,如存在,求的值,如不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在上的函数满足:对任意的,当时,都有.
(1)若,求实数的取值范围;
(2)若为周期函数,证明:是常值函数;
(3)若在上满足:,,,
①记(),求数列的通项公式;② 求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是月日,张老师把告诉了甲,把告诉了乙,然后张老师列出来如下10个日期供选择: 2月5日,2月7日,2月9日,3月2日,3月7日,5月5日,5月8日,7月2日,7月6日,7月9日.看完日期后,甲说“我不知道,但你一定也不知道”,乙听了甲的话后,说“本来我不知道,但现在我知道了”,甲接着说,“哦,现在我也知道了”.请问张老师的生日是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t为参数).
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)当m=2时,直线l与曲线C交于A、B两点,求|AB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
频数 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com