精英家教网 > 高中数学 > 题目详情
6.已知α是第二象限的角,tanα=$\frac{1}{2}$,则cosα=-$\frac{2\sqrt{5}}{5}$.

分析 根据同角的三角函数关系,结合α是第二象限的角,求出cosα的值.

解答 解:α是第二象限的角,tanα=-$\frac{1}{2}$,
∴sinα=-$\frac{1}{2}$cosα;
∴sin2α+cos2α=${(-\frac{1}{2}cosα)}^{2}$+cos2α=$\frac{5}{4}$cos2α=1,
∴cos2α=$\frac{4}{5}$;
又cosα<0,
∴cosα=-$\frac{2\sqrt{5}}{5}$.
故答案为:$-\frac{{2\sqrt{5}}}{5}$.

点评 本题考查了同角的三角函数关系与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.抛物线y=x2上到直线2x-y-4=0距离最近的点的坐标是(  )
A.(1,1)B.$({\frac{1}{2},\frac{1}{4}})$C.$({\frac{1}{3},\frac{1}{9}})$D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一质点按规律s=2t3运动,则其在t=1时的瞬时速度为6m/s.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,$-\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式
(2)如何由函数y=2sinx的图象通过适当的变换得到函数f(x)的图象,写出变换过程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知命题:$\end{array}}\right\}$⇒a∥b,在“横线”处补上一个条件使其构成真命题(其中a、b为直线,α,β为平面),这个条件是a∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校拟举办“成语大赛”,高一(1)班的甲、乙两名同学在本班参加:“成语大赛”选拔测试,在相同的测试条件下,两人5次测试的成绩(单位:分)的茎叶图如图所示:
(1)你认为选派谁参加更好?并说明理由;
(2)若从甲、乙两人5次的成绩中各随机抽取1次进行分析,设抽到的2次成绩中,90分以上的次数为X,求随机变量X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}中,a1=1,当n≥2时,其前n项和为Sn,满足${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$).
(Ⅰ)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列,并求Sn的表达式;
(Ⅱ)设bn=$\frac{{S}_{n}}{2n+1}$,数列{bn}的前n项和为Tn,不等式Tn≥$\frac{1}{18}$(m2-5m)对所有的n∈N*恒成立,求正整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列圆的标准方程:
(1)圆心是(4,-1),且过点(5,2);
(2)圆心在y轴上,半径长为5,且过点(3,-4);
(3)求过两点C(-1,1)和D(1,3),圆心在x轴上的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.△ABC的内角A,B,C的对边分别是a,b,c,满足a2+bc≤b2+c2,则角A的范围是(  )
A.$(0,\frac{π}{6}]$B.$(0,\frac{π}{3}]$C.$[\frac{π}{6},π)$D.$[\frac{π}{3},π)$

查看答案和解析>>

同步练习册答案