精英家教网 > 高中数学 > 题目详情
19.在△ABC中,A、B、C所对的边分别是a、b、c,且有bcosC+ccosB=2acosB.
(1)求B的大小;
(2)若△ABC的面积是$\frac{3\sqrt{3}}{4}$,且a+c=5,求b.

分析 (1)由已知及正弦定理得:sinA=2sinAcosB,又0<A<π.可求cosB=$\frac{1}{2}$,结合范围0<B<π,即可求B的值.
(2)由三角形面积公式可求ac=3,又a+c=5,利用余弦定理及平方和公式即可求b的值.

解答 解:(1)由bcosC+ccosB=2acosB,及正弦定理得:sinBcosC+sinCcosB=2sinAcosB,
即sin(B+C)=2sinAcosB,
又A+B+C=π,所以sin(B+C)=sinA,
从而sinA=2sinAcosB,又0<A<π.
故cosB=$\frac{1}{2}$,又0<B<π,所以B=$\frac{π}{3}$.
(2)又S=$\frac{1}{2}$acsin$\frac{π}{3}$=$\frac{3\sqrt{3}}{4}$,
所以ac=3,又a+c=5,
从而b2=a2+c2-2accosB=(a+c)2-3ac=25-9=16,故b=4.

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式,三角形内角和定理,两角和的正弦函数公式的综合应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.A,B两点在半径为2的球面上,且以线段AB为直径的小圆周长为2π,则A,B两点间的球面距离为(  )
A.πB.C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.2015是等差数列3,7,11…的第     项(  )
A.502B.503C.504D.505

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知直线(2+m-m2)x-(4-m2)y+m2-4=0的斜率不存在,则m的值是(  )
A.2B.2或$-\frac{1}{2}$C.-2D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在直角坐标系中,函数$f(x)={(\frac{1}{2})^{|{x+1}|}}$的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知:数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*
(1)证明数列{an+2}是等比数列.并求数列{an}的通项公式an;
(2)若数列{bn}满足bn=log2(an+2),而Tn为数列{$\frac{{b}_{n}}{{a}_{n}+2}$}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}中,a1=2,a3+a5=10.
(1)求数列{an}的通项公式;
(2)设bn=an•2n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-2lnx.
(1)求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正三棱锥的底面边长为2,则经过高的中点且平行于底面的平面截该三棱锥所得的截面面积是$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

同步练习册答案