【题目】甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发个红包,每个红包金额为元,.已知在每轮游戏中所产生的个红包金额的频率分布直方图如图所示.
(1)求的值,并根据频率分布直方图,估计红包金额的众数;
(2)以频率分布直方图中的频率作为概率,若甲、乙、丙三人从中各抢到一个红包,其中金额在的红包个数为,求的分布列和期望.
科目:高中数学 来源: 题型:
【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时,若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,曲线 的参数方程为(为参数).
(1)直线过且与曲线相切,求直线的极坐标方程;
(2)点与点关于轴对称,求曲线上的点到点的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设不等式组所表示的平面区域为Dn,记Dn内的格点(格点即横坐标和纵坐标均为整数的点)的个数为f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表达式;
(2)设bn=2nf(n),Sn为{bn}的前n项和,求Sn;
(3)记,若对于一切正整数n,总有Tn≤m成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)的焦点为F并且经过点A(1,﹣2).
(1)求抛物线C的方程;
(2)过F作倾斜角为45°的直线l,交抛物线C于M,N两点,O为坐标原点,求△OMN的面积。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.
(1)求椭圆的标准方程;
(2)是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:
(Ⅰ)求频率分布直方图中的值;
(Ⅱ)分别求出成绩落在中的学生人数;
(Ⅲ)从成绩在的学生中任选2人,求所选学生的成绩都落在中的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com