精英家教网 > 高中数学 > 题目详情

【题目】如图,四面体.

1)若中点是,求证:

2)若是线段上的动点,是面上的动点,且线段的中点是,求动点的轨迹与四面体围成的较小的几何体的体积.

【答案】1)见解析;(2)动点的轨迹是以为球心,半径为的球面,体积.

【解析】

1)证明出平面可得出,再由三线合一得出,利用直线与平面垂直的判定定理可得出平面

2)证明平面,可得出,由直角三角形的性质可得出,可知动点的轨迹是以为球心,半径的球面,计算出的大小,可得出所求几何体占球的比例,由此可得出所求几何体的体积.

1平面

平面.

的中点,.

,因此,平面

2)如下图所示:

平面

平面,则.

中,为斜边的中点,则.

由(1)知,平面,且.

所以,点的轨迹是以为球心,半径为的球面.

中,,则

,所以,动点的轨迹与四面体围成的较小的几何体为球体的.

因此,所求几何体的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆 经过椭圆 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆 两点,且).

(1)求椭圆的方程;

(2)当三角形的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是,甲、丙二人都没有击中目标的概率是,乙、丙二人都击中目标的概率是.甲乙丙是否击中目标相互独立.

1)求乙、丙二人各自击中目标的概率;

2)设乙、丙二人中击中目标的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为,点为椭圆上任意一点,点关于原点的对称点为点,有,且当的面积最大时为等边三角形.

1)求椭圆的标准方程;

2)与圆相切的直线交椭圆两点,若椭圆上存在点满足,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左右焦点为为它的中心,为双曲线右支上的一点,的内切圆圆心为,且圆轴相切于点,过作直线的垂线,垂足为,若双曲线的离心率为,则( )

A.B.C.D.关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称礼让斑马线,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.

1)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不礼让斑马线行为与驾龄的关系,得到如下列联表:能否据此判断有97.5%的把握认为礼让斑马线行为与驾龄有关?

不礼让斑马线

礼让斑马线

合计

驾龄不超过1

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

2)下图是某市一主干路口监控设备所抓拍的5个月内驾驶员不礼让斑马线行为的折线图:

请结合图形和所给数据求违章驾驶员人数y与月份x之间的回归直线方程,并预测该路口7月份的不礼让斑马线违章驾驶员人数.

附注:参考数据:

参考公式:(其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在所有棱长都相等的三棱锥中,DEF分别是ABBCCA的中点,下列四个命题:

1平面PDF;(2平面

3)平面平面;(4)平面平面

其中正确命题的序号为________

A.2)(3B.1)(3C.2)(4D.1)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个粒子从原点出发,在第一象限和两坐标轴正半轴上运动,在第一秒时它从原点运动到点,接着它按图所示在轴、轴的垂直方向上来回运动,且每秒移动一个单位长度,那么,在2018秒时,这个粒子所处的位置在点______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若存在两个极值点,证明:

查看答案和解析>>

同步练习册答案