分析 先由f(1+x)=f(1-x)得到f(x)的图象关于直线x=1轴对称,进而求得a=1,再根据题中所给单调区间,求出m≥1.
解答 解:因为f(1+x)=f(1-x),
所以,f(x)的图象关于直线x=1轴对称,
而f(x)=2|x-a|,所以f(x)的图象关于直线x=a轴对称,
因此,a=1,f(x)=2|x-1|,
且该函数在(-∞,1]上单调递减,在[1,+∞)上单调递增,
又因为函数f(x)在[m,+∞)上单调递增,
所以,m≥1,即实数m的最小值为1.
故答案为:1.
点评 本题主要考查了指数型复合函数的图象与性质,涉及该函数图象的对称性和单调区间,体现了数形结合的解题思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
羊毛颜色 | 每匹需要 ( kg) | 供应量(kg) | |
布料A | 布料B | ||
红 | 4 | 4 | 1400 |
绿 | 6 | 3 | 1800 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com