精英家教网 > 高中数学 > 题目详情

【题目】设椭圆C: =1的离心率e= ,动点P在椭圆C上,点P到椭圆C的两个焦点的距离之和是4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C1的方程为 =1(m>n>0),椭圆C2的方程为 =λ(λ>0,且λ≠1),则称椭圆C2是椭圆C1的λ倍相似椭圆.已知椭圆C2是椭圆C的3倍相似椭圆.若过椭圆C上动点P的切线l交椭圆C2于A,B两点,O为坐标原点,试证明当切线l变化时|PA|=|PB|并研究△OAB面积的变化情况.

【答案】解:(Ⅰ)依题意,e= =
由椭圆的定义可得2a=4,即a=2,
即有c=1,b2=a2﹣c2=3,
则椭圆C方程为: =1;
(Ⅱ)椭圆C的3倍相似椭圆C2的方程为: =3;
①若切线l垂直于x轴,则其方程为:x=±2,解得y=±
显然|PA|=|PB|,|AB|=2 ,△OAB面积为 ×2×2 =2
②若切线l不垂直于x轴,可设其方程为:y=kx+m.
将y=kx+m代人椭圆C方程,得:(3+4k2)x2+8kmx+4m2﹣12=0,
△=(8km)2﹣4(3+4k2)(4m2﹣12)=48(4k2+3﹣m2)=0,
即m2=4k2+3,
设A,B两点的坐标分别是(x1 , y1),(x2 , y2),
将y=kx+m代入椭圆C2的方程,得:(3+4k2)x2+8kmx+4m2﹣36=0,
此时x1+x2=﹣ ,x1x2=
则AB的中点为(﹣ ),即为(﹣ ),
代入椭圆C的方程,可得 + = = =1,
满足椭圆方程,则|PA|=|PB|成立;
即有|AB|= |x1﹣x2|=
=
= =
又点O到直线l的距离d=
可得SOAB= |AB|d=2
综上,当切线l变化时,△OAB的面积为定值2
【解析】(Ⅰ)由椭圆的定义可得a=2,再由离心率公式和a,b,c的关系,即可得到b,进而得到椭圆方程;(Ⅱ)依题意,求得椭圆C2方程,讨论直线的斜率不存在,得到|PA|=|PB|和面积为定值;当切线l的斜率存在时,设l的方程为:y=kx+m,代入椭圆C2方程,运用韦达定理和中点坐标公式,可得|PA|=|PB|,由弦长公式,和点到直线的距离公式,结合面积公式,计算即可得到面积为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】自平面上一点O引两条射线OA,OB,P在OA上运动,Q在OB上运动且保持| |为定值2 (P,Q不与O重合).已知∠AOB=120°,
(I)PQ的中点M的轨迹是的一部分(不需写具体方程);
(II)N是线段PQ上任﹣点,若|OM|=1,则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆的方程为,过点的直线与圆交于点,与轴交于点,设,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为 ,且经过点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)的顶点都在椭圆上,其中关于原点对称,试问能否为正三角形?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上,且圆经过点.

(1)求圆的标准方程;

(2)直线过点且与圆相交,所得弦长为4,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的经过中心的弦称为椭圆的一条直径,平行于该直径的所有弦的中点的轨迹为一条线段,称为该直径的共轭直径,已知椭圆的方程为.

1)若一条直径的斜率为,求该直径的共轭直径所在的直线方程;

2)若椭圆的两条共轭直径为,它们的斜率分别为,证明:四边形的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费每月用电不超过100度仍按原标准收费,超过的部分每度按0.5元计算.

Ⅰ.设月用电x度时,应交电费y元,写出y关于x的函数关系式;

Ⅱ.小明家第一季度缴纳电费情况如下:

月份

一月

二月

三月

合计

缴费金额

76

63

45.6

184.6

问小明家第一季度共用多少度?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数定义域为,若对于任意的,都有,且时,有.

(1)判断并证明函数的奇偶性;

(2)判断并证明函数的单调性;

(3)设,若,对所有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρsinθ+3=0,A、B两点极坐标分别为(1,π)、(1,0).
(1)求曲线C的参数方程;
(2)在曲线C上取一点P,求|AP|2+|BP|2的最值.

查看答案和解析>>

同步练习册答案