精英家教网 > 高中数学 > 题目详情

【题目】设x,y满足条件 ,若目标函数z=ax+by(a>0,b>0)的最大值为12,则 的最小值为(
A.
B.
C.
D.4

【答案】D
【解析】解:不等式表示的平面区域如图所示阴影部分,
当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,
∴4a+6b=12,即2a+3b=6,
=( )× = (12+ )≥4
当且仅当 时, 的最小值为4
故选D.
【考点精析】根据题目的已知条件,利用基本不等式和基本不等式在最值问题中的应用的相关知识可以得到问题的答案,需要掌握基本不等式:,(当且仅当时取到等号);变形公式:;用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】判断下列结论的正误(正确的打“√”,错误的打“×”).

)在增函数与减函数的定义中,可以把任意两个自变量改为存在两个自变量_____

)函数的单调递减区间是_____

)所有的单调函数都有最值._______

表示同一个集合.______

)已知定义在上的函数的图象是连续不断的,当时,则方程至少有一个实数解._______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x3+3ax2+bx+a2(a>1)在x=﹣1时有极值0.
(1)求常数 a,b的值;
(2)方程f(x)=c在区间[﹣4,0]上有三个不同的实根时,求实数c的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xex+ax2+2x+1在x=﹣1处取得极值.
(1)求函数f(x)的单调区间;
(2)若函数y=f(x)﹣m﹣1在[﹣2,2]上恰有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ ,其中a为大于零的常数..
(1)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值;
(3)求证:对于任意的n∈N* , 且n>1时,都有lnn> + +…+ 成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线l1:y=x+a和l2:y=x+b将圆(x﹣1)2+(y﹣2)2=8分成长度相同的四段弧,则ab=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形ABCD的三个顶点的坐标为A(﹣1,5),B(﹣2,﹣1),C(2,3).

(1)求平行四边形ABCD的顶点D的坐标;
(2)在△ACD中,求CD边上的高所在直线方程;
(3)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(1)班全体男生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图所示,据此解答如下问题:

(1)求该班全体男生的人数;

(2)求分数在之间的男生人数,并计算频率公布直方图中之间的矩形的高;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法?(用数字作答)
(1)男、女同学各2名;
(2)男、女同学分别至少有1名;
(3)在(2)的前提下,男同学甲与女同学乙不能同时选出。

查看答案和解析>>

同步练习册答案