精英家教网 > 高中数学 > 题目详情

【题目】直线xy10被圆(x1)2y23截得的弦长等于(  )

A. B. 2

C. 2 D. 4

【答案】B

【解析】

如图,(x1)2y23的圆心为M(1,0),

圆半径|AM|=

圆心M (1,0)到直线x+y1=0的距离:

|

∴直线x+y1=0被圆(x+1)2+y2=3截得的弦长:

.

故选B.

点睛: 本题考查圆的标准方程以及直线和圆的位置关系.判断直线与圆的位置关系一般有两种方法: 1.代数法:将直线方程与圆方程联立方程组,再将二元方 程组转化为一元二次方程,该方程解的情况即对应直 线与圆的位置关系.这种方法具有一般性,适合于判 断直线与圆锥曲线的位置关系,但是计算量较大. 2.几何法:圆心到直线的距离与圆半径比较大小,即可判断直线与圆的位置关系.这种方法的特点是计算量较小.当直线与圆相交时,可利用垂径定理得出圆心到直线的距离,弦长和半径的勾股关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+aex , 若f′(x)≥2 恒成立,则a的取值范围为(
A.[3,+∞)
B.(0,3]
C.[﹣3,0)
D.(﹣∞,﹣3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式ax2+bx+c>0的解集为{x|x<1或x>3},则不等式cx2﹣bx+a<0的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设O为坐标原点,曲线x2+y2+2x﹣6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足 =0.
(1)求m的值;
(2)求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的单调区间;

2)令,区间 为自然对数的底数。

)若函数在区间上有两个极值,求实数的取值范围;

)设函数在区间上的两个极值分别为

求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若两条异面直线所成的角为90°,则称这对异面直线为“理想异面直线对”,在连接正方体各顶点的所有直线中,“理想异面直线对”的对数为(
A.24
B.48
C.72
D.78

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,﹣2),椭圆E: =1(a>b>0)的离心率为 ,F是椭圆的焦点,直线AF的斜率为 ,O为坐标原点.
(1)求E的方程;
(2)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知线段AB长度为a(a为定值),在其上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,⊙P和⊙Q是这两个正方形的外接圆,它们交于点M、N.试以A为坐标原点,建立适当的平面直角坐标系.

(1)证明:不论点M如何选取,直线MN都通过一定点S;
(2)当 时,过A作⊙Q的割线,交⊙Q于G、H两点,在线段GH上取一点K,使 = 求点K的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,倾斜角为的直线过点与拋物线交于两点, 为坐标原点, 的面积为.

(1)求

(2)设点为直线与拋物线在第一象限的交点,过点的斜率分别为的两条弦,如果,证明直线过定点,并求出定点坐标.

查看答案和解析>>

同步练习册答案