精英家教网 > 高中数学 > 题目详情
若点为圆的弦的中点,则直线的方程是_____
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.(本题满分16分)
点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求点M的坐标;
(3)在(2)的条件下,求椭圆上的点到点M的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C:,它的离心率为.直线与以原点为圆心,以C的短半轴为半径的圆O相切. 求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题10分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B.
(1)求椭圆的方程;
(2)求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
⑴求椭圆C的方程;
⑵设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;
⑶在⑵的条件下,证明直线轴相交于定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆C:与圆F:的一个交点,且圆心F是椭圆的一个焦点,(1)求椭圆C的方程;(2)过F的直线交圆与P、Q两点,连AP、AQ分别交椭圆与M、N点,试问直线MN是否过定点?若过定点,则求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知+=1的焦点F1、F2,在直线l:x+y-6=0上找一点M,求以F1、F2为焦点,通过点M且长轴最短的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与椭圆+y2=1共焦点且过点P(2,1)的双曲线方程是(  )
A.-y2=1B.-y2=1C.-=1 D.x2=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点M(-2,0)的直线L与椭圆x2+2y2=2交于AB两点,线段AB中点为N,设直线L的斜率为k1 (k1≠0),直线ON的斜率为k2,则k1k2的值为(   )
A.2B.-2C.1/2D.-1/2

查看答案和解析>>

同步练习册答案