精英家教网 > 高中数学 > 题目详情
18.斜率为2的直线m交双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1与A,B两点,抛物线y2=2px恰过AB中点M,若M的横坐标为$\frac{p}{2}$,则双曲线的离心率e═$\sqrt{5}$.

分析 由题意,M($\frac{p}{2}$,p),利用点差法,结合直线m斜率为2,可得b=2a,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,即可求出双曲线的离心率.

解答 解:由题意,M($\frac{p}{2}$,p)
设A(x1,y1),B(x2,y2),则x1+x2=p,y1+y2=2p,
A,B代入双曲线方程,作差,整理可得b2(x1+x2)(x1-x2)-a2(y1+y2)(y1-y2)=0,
∴pb2(x1-x2)-2pa2(y1-y2)=0,
∵直线m斜率为2,
∴b2=4a2
∴b=2a,
∴c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
∴e=$\frac{c}{a}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题考查双曲线的离心率,考查点差法,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{1,x<0}\end{array}\right.$.
(1)写出该函数的单调递增区间;
(2)解不等式f(1-x2)>f(2x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=$\frac{a+ln(2x+1)}{2x+1}$.
(Ⅰ)若曲线f(x)在x=0处的切线与直线x-2y-2016=0垂直,求y=f(x)的极值;
(Ⅱ)若关于t的方程(2x+1)2f′(x)=t3-12t在x$∈[\frac{e-1}{2},\frac{{e}^{2}-1}{2}]$时恒有3个不同的实数根,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.由命题p:“函数y=$\frac{1}{x}$是减函数”与q:“数列a、a2、a3,…是等比数列”构成的命题,下列判断正确的是(  )
A.p∨q为真,p∧q为假B.p∨q为假,p∧q为假C.p∨q为真,p∧q为假D.p∨q为假,p∧q为真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=2x2-mx+3在(-∞,2)上的减函数,在(2,+∞)上是增函数,则m的值为(  )
A.-2B.-8C.2D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=$\left\{\begin{array}{l}{(x+a)^{2},x≤0}\\{x+\frac{1}{x}+a,x>0}\end{array}\right.$,若f(0)是f(x)的最小值,则实数a的取值范围[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若函数y=f[f(x)]-m存在三个零点,则实数m的取值范围是(  )
A.[0,1]B.(0,1]C.(-∞,0]D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\overrightarrow{a}$=(-2,1,3),$\overrightarrow{b}$=(-1,2,1),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow{b}$),则实数λ的值为(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=a-bcos(2x+$\frac{π}{6}$)的最大值为3,最小值为-1.
(1)求a,b的值;
(2)设函数g(x)=4asin(bx-$\frac{π}{3}$),求方程g(x)-2=0在区间[$\frac{π}{6}$,$\frac{5}{6}$π]上所有根之和.

查看答案和解析>>

同步练习册答案