精英家教网 > 高中数学 > 题目详情
已知椭圆C以双曲线
x2
3
-y2=1
的焦点为顶点,以双曲线的顶点为焦点.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于点M,N两点(M,N不是左右顶点),且以线段MN为直径的圆过椭圆C左顶点A,求证:直线l过定点,并求出该定点的坐标.
(1)由双曲线
x2
3
-y2=1
,得c2=3+1=4,∴其焦点为(-2,0),(2,0).顶点为(-
3
,0
),(
3
,0
).
则所求椭圆的半长轴a=2,半焦距c=
3
,b2=a2-c2=4-3=1.
∴椭圆C的方程为:
x2
4
+y2=1

(2)证明:设M(x1,y1),N(x2,y2),
联立方程组
y=kx+m
x2
4
+y2=1
⇒(1+4k2)x2+8kmx+4m2-4=0

x1+x2=
-8km
1+4k2
x1x2=
4m2-4
1+4k2

∵以MN为直径的圆过点A(-2,0),∴
AM
AN
=0

即x1x2+2(x1+x2)+4+y1y2=0,整理得5m2-16km+12k2=0,
m=
6
5
k
或m=2k,满足△>0,
若m=2k,则直线l恒过定点A(-2,0),不合题意;
m=
6
5
k
,则直线l恒过定点(-
6
5
,0)

∴则直线l恒过定点(-
6
5
,0)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

抛物线y2=2px(p>0)上纵坐标为-p的点M到焦点的距离为2.
(Ⅰ)求p的值;
(Ⅱ)如图,A,B,C为抛物线上三点,且线段MA,MB,MC与x轴交点的横坐标依次组成公差为1的等差数列,若△AMB的面积是△BMC面积的
1
2
,求直线MB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,过抛物线y2=2px(p>0)的顶点作两条互相垂直的弦OA、OB.
(1)设OA的斜率为k,试用k表示点A、B的坐标;
(2)求弦AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C过点M(0,-2),N(3,1),且圆心C在直线x+2y+1=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)问是否存在满足以下两个条件的直线l:①斜率为1;②直线被圆C截得的弦为AB,以AB为直径的圆C1过原点.若存在这样的直线,请求出其方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},问是否存在非零整数a,使A∩B≠∅?若存在,请求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a是实数,直线2x-y+5=0与直线x-y+a+4=0的交点不在椭圆x2+2y2=11上,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的方程为:y2=4x,直线l过(-2,1)且斜率为k≥0,当k为何值时,直线l与抛物线C(1)只有一个公共点,(2)有两个公共点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设点F1(-c,0)、F2(c,0)分别是椭圆C:
x2
a2
+y2=1(a>1)
的左、右焦点,P为椭圆C上任意一点,且
PF1
PF2
最小值为0.
(1)求椭圆C的方程;
(2)设直线l1:y=kx+m,l2:y=kx+n,若l1、l2均与椭圆C相切,证明:m+n=0;
(3)在(2)的条件下,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,请求出点B坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,锐角三角形ABC的高CD和高BE相交于O,则与△DOB相似的三角形个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案