精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=x+ 有如下性质:如果常数t>0,那么该函数(0, ]上是减函数,在[ ,+∞)上是增函数.
(1)已知f(x)= ,g(x)=﹣x﹣2a,x∈[0,1],利用上述性质,求函数f(x)的单调区间和值域.
(2)对于(1)中的函数f(x)和函数g(x),若对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

【答案】
(1)解:f(x)= =2x+1+ ﹣8,

设u=2x+1,x∈[0,1],则1≤u≤3,则y=u+ ﹣8,u∈[1,3],由已知性质得,

当1≤u≤2,即0≤x≤ 时,f(x)单调递减,所以递减区间为[0, ]

当2≤u≤3,即 ≤x≤1时,f(x)单调递增,所以递增区间为[ ,1]

由f(0)=﹣3,f( )=﹣4,f(1)=﹣ ,得f(x)的值域为[﹣4,﹣3]


(2)解:由于g(x)=﹣x﹣2a为减函数,故g(x)∈[﹣1﹣2a,﹣2a],x∈[0,1],

由题意,f(x)的值域为g(x)的值域的子集,从而有

所以 a=


【解析】(1)将2x+1看成整体,研究对勾函数的单调性从而求出函数的值域,以及利用复合函数的单调性的性质得到该函数的单调性;(2)对于任意的x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)可转化成f(x)的值域为g(x)的值域的子集,建立关系式,解之即可.
【考点精析】本题主要考查了函数单调性的性质的相关知识点,需要掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2+2bx+c(b,c∈R).
(1)若函数y=f(x)的零点为﹣1和1,求实数b,c的值;
(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 个正数 满足 ).
(1)当 时,证明:
(2)当 时,不等式 也成立,请你将其推广到 )个正数 的情形,归纳出一般性的结论并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;

(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2+2x.
(Ⅰ)求f(0)的值;
(Ⅱ)求此函数在R上的解析式;
(Ⅲ)若对任意的t∈R,不等式f(t+1)+f(m﹣2t2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为菱形, 底面 上的一点,PE=2EC, 的中点.

(1)证明: 平面

(2)证明: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)在R上可导且满足不等式xf′(x)+f(x)>0恒成立,且常数a,b满足a>b,则下列不等式一定成立的是(
A.af(a)>bf(b)
B.af(b)>bf(a)
C.af(a)<bf(b)
D.af(b)<bf(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD

EPD的中点,PA=2AB=2.

(1)若FPC的中点,求证PC⊥平面AEF

(2)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3-3ax2+3bx的图像与直线12x+y-1=0相切于点(1,-11)。
(1)求a,b的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

同步练习册答案