【题目】如图,在空间几何体A﹣BCDE中,底面BCDE是梯形,且CD∥BE,CD=2BE=4,∠CDE=60°,△ADE是边长为2的等边三角形,F为AC的中点. (Ⅰ)求证:BF∥平面ADE;
(Ⅱ)若AC=4,求证:平面ADE⊥平面BCDE;
(Ⅲ)若AC=4,求几何体C﹣BDF的体积.
【答案】证明:(Ⅰ)取DA的中点G连结FG,GE,
∵F为AC的中点,∴ ,
又∵DC∥BE,CD=2BE,∴EB∥GF,且EB=GF,
∴四边形BFGE为平行四边形,∴BF∥EG,
∵EG平面ADE,BF平面ADE,
∴BF∥平面ADE
解:(Ⅱ)取DE的中点H,连AH,CH,
∵△ADE为等边三角形,∴AH⊥DE,且 ,
在△DHC中,DH=1,DC=4,HDC=60°,∴ ,
∴AC2=AH2+HC2 , 即AH⊥HC,∵DE∩HC=H,
∴AH⊥平面BCDE,∵AH平面ADE,
∴平面ADE⊥BCDE…(8分)
(Ⅲ) = =2,
∵F是AC中点,
∴几何体C﹣BDF的体积
【解析】(Ⅰ)取DA的中点G连结FG,GE,推导出四边形BFGE为平行四边形,从而BF∥EG,由此能证明BF∥平面ADE.(Ⅱ)取DE的中点H,连AH,CH,推导出AH⊥DE,AH⊥HC,从而AH⊥平面BCDE,由此能证明平面ADE⊥BCDE.(Ⅲ)几何体C﹣BDF的体积 ,由此能求出结果.
【考点精析】掌握平面与平面垂直的判定是解答本题的根本,需要知道一个平面过另一个平面的垂线,则这两个平面垂直.
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C= .
(Ⅰ)若△ABC的面积等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)= sin(2x﹣ )+1的图象向左平移 个单位长度,再向下平移1个单位长度后,得到函数g(x)的图象,则函数g(x)具有的性质(填入所有正确的序号) ①最大值为 ,图象关于直线x= 对称;②在(﹣ ,0)上单调递增,且为偶函数;③最小正周期为π;④图象关于点( ,0)对称,⑤在(0, )上单调递增,且为奇函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象向左平移 个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的最大值及取得最大值时的x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数y=sinx(x∈R)的图象上所有的点的横坐标缩短到原来的 倍(纵坐标不变),再把所得图象向左平行移动 个单位长度,得到的图象所表示的函数是( )
A.y=sin( x+ ),x∈R
B.y=sin( x+ ),x∈R
C.y=sin(2x+ ),x∈R
D.y=sin(2x+ ),x∈R
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com