精英家教网 > 高中数学 > 题目详情

【题目】如图,在空间几何体A﹣BCDE中,底面BCDE是梯形,且CD∥BE,CD=2BE=4,∠CDE=60°,△ADE是边长为2的等边三角形,F为AC的中点. (Ⅰ)求证:BF∥平面ADE;
(Ⅱ)若AC=4,求证:平面ADE⊥平面BCDE;
(Ⅲ)若AC=4,求几何体C﹣BDF的体积.

【答案】证明:(Ⅰ)取DA的中点G连结FG,GE,
∵F为AC的中点,∴
又∵DC∥BE,CD=2BE,∴EB∥GF,且EB=GF,
∴四边形BFGE为平行四边形,∴BF∥EG,
∵EG平面ADE,BF平面ADE,
∴BF∥平面ADE
解:(Ⅱ)取DE的中点H,连AH,CH,

∵△ADE为等边三角形,∴AH⊥DE,且
在△DHC中,DH=1,DC=4,HDC=60°,∴
∴AC2=AH2+HC2 , 即AH⊥HC,∵DE∩HC=H,
∴AH⊥平面BCDE,∵AH平面ADE,
∴平面ADE⊥BCDE…(8分)
(Ⅲ) = =2,
∵F是AC中点,
∴几何体C﹣BDF的体积
【解析】(Ⅰ)取DA的中点G连结FG,GE,推导出四边形BFGE为平行四边形,从而BF∥EG,由此能证明BF∥平面ADE.(Ⅱ)取DE的中点H,连AH,CH,推导出AH⊥DE,AH⊥HC,从而AH⊥平面BCDE,由此能证明平面ADE⊥BCDE.(Ⅲ)几何体C﹣BDF的体积 ,由此能求出结果.
【考点精析】掌握平面与平面垂直的判定是解答本题的根本,需要知道一个平面过另一个平面的垂线,则这两个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=
(Ⅰ)若△ABC的面积等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,M为PC中点.
(1)求证:BC∥平面PAD;
(2)求证:AP∥平面MBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD,其三视图和直观图如图所示,E为BC中点. (Ⅰ)求此几何体的体积;
(Ⅱ)求证:平面PAE⊥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)= sin(2x﹣ )+1的图象向左平移 个单位长度,再向下平移1个单位长度后,得到函数g(x)的图象,则函数g(x)具有的性质(填入所有正确的序号) ①最大值为 ,图象关于直线x= 对称;②在(﹣ ,0)上单调递增,且为偶函数;③最小正周期为π;④图象关于点( ,0)对称,⑤在(0, )上单调递增,且为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象向左平移 个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的最大值及取得最大值时的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数y=sinx(x∈R)的图象上所有的点的横坐标缩短到原来的 倍(纵坐标不变),再把所得图象向左平行移动 个单位长度,得到的图象所表示的函数是(
A.y=sin( x+ ),x∈R
B.y=sin( x+ ),x∈R
C.y=sin(2x+ ),x∈R
D.y=sin(2x+ ),x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面,底面是直角梯形,

,点上,且.

(1)已知点,且,求证:平面平面

(2)若的面积是梯形面积为,求点E到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

1)求不等式的解集

2)若,求证: .

查看答案和解析>>

同步练习册答案