精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足是自然对数的底数),且,令.

1)证明:

2)证明:是等比数列,且的通项公式是

3)是否存在常数,对任意自然数均有成立?若存在,求的取值范围,否则,说明理由.

【答案】1)证明见解析;(2)证明见解析;(3)存在,

【解析】

1)由已知可得:.利用基本不等式的性质可得:,可得,代入化简即可得出.

2)设,由.可得.即可证明是等比数列,利用通项公式、累加求和方法即可得出.

3)假设存在常数,对任意自然数均有成立.由(2)可得:时,,解得时,,利用单调性即可得出.

解:(1)依题意得,要证明,即证明

又因为,所以

要证明,即证明,要证明,即证明

又因为,即得证.

2)设,因为,且

.

所以:是公比为的等比数列,则

的通项公式是

3)假设存在存在常数,对任意自然数均有成立,

由(2)知,

时,

时,

则当时,,故存在这样的

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某销售公司在当地两家超市各有一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了两家超市往年同期各50天的该食品销售记录,得到如下数据:

销售件数

8

9

10

11

频数

20

40

20

20

以这些数据的频数代替两家超市的食品销售件数的概率,记表示这两家超市每日共销售食品件数,表示销售公司每日共需购进食品的件数.

(1)求的分布列;

(2)以销售食品利润的期望为决策依据,在之中选其一,应选哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年9月第三周是国家网络安全宣传周.某学校为调查本校学生对网络安全知识的了解情况,组织了《网络信息辨析测试》活动,并随机抽取50人的测试成绩绘制了频率分布直方图如图所示:

1)某学生的测试成绩是75分,你觉得该同学的测试成绩低不低?说明理由;

2)将成绩在内定义为合格;成绩在内定义为不合格”.①请将下面的列联表补充完整; ②是否有90%的把认为网络安全知识的掌握情况与性别有关?说明你的理由;

合格

不合格

合计

男生

26

女生

6

合计

3)在(2)的前提下,对50人按是否合格,利用分层抽样的方法抽取5人,再从5人中随机抽取2人,求恰好2人都合格的概率.:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程是是参数).以原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.

1)求曲线的普通方程与曲线的直角坐标方程;

2)设为曲线上的动点,过点且与垂直的直线交于点,求的最小值,并求此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的辅圆”.过椭圆第一象限内一点Px轴的垂线交其辅圆于点Q,当点Q在点P的上方时,称点Q为点P上辅点”.已知椭圆上的点的上辅点为.

1)求椭圆E的方程;

2)若的面积等于,求上辅点Q的坐标;

3)过上辅点Q作辅圆的切线与x轴交于点T,判断直线PT与椭圆E的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x24ax+3a20a0),命题q:实数x满足x25x+60

1)若a1,且pq为真命题,求实数x的取值范围;

2)若pq的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是菱形,边的中点,点在线段.

1)证明:平面平面

2)若平面,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,以下结论正确的个数为(

①当时,函数的图象的对称中心为

②当时,函数上为单调递减函数;

③若函数上不单调,则

④当时,上的最大值为15

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}首项a11,前n项和Snan之间满足an

1)求证:数列{}是等差数列

2)求数列{an}的通项公式

3)设存在正数k,使(1+S1)(1+S2)…(1+Sn)≥k对于一切nN*都成立,求k的最大值.

查看答案和解析>>

同步练习册答案