精英家教网 > 高中数学 > 题目详情
已知f(x)为R上的可导函数,且?x∈R,均有f(x)>f′(x),则有(  )
A、e2014f(-2014)<f(0),f(2014)>e2014f(0)
B、e2014f(-2014)<f(0),f(2014)<e2014f(0)
C、e2014f(-2014)>f(0),f(2014)>e2014f(0)
D、e2014f(-2014)>f(0),f(2014)<e2014f(0)
考点:函数的单调性与导数的关系
专题:导数的综合应用
分析:构造函数g(x)=
f(x)
ex
,可求函数g(x)=
f(x)
ex
在R上单调递减,即可得
f(-2014)
e-2014
>f(0),
f(2014)
e2014
<f(0).
解答: 解:构造函数g(x)=
f(x)
ex
,则g′(x)=
f′(x)-f(x)
ex

因为?x∈R,均有f(x)>f′(x),并且ex>0,
所以g′(x)<0,故函数g(x)=
f(x)
ex
在R上单调递减,
所以g(-2014)>g(0),g(2014)<g(0),
f(-2014)
e-2014
>f(0),
f(2014)
e2014
<f(0),
即e2014f(-2014)>f(0),f(2014)<e2014f(0).
故选:D.
点评:本题主要考察了函数的单调性与导数的关系,其中,构造函数g(x),并讨论其单调性是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log2
2+x
2-x
,求函数定义域,奇偶性,及在定义域上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x<a},B={x|1<x<2},且A∪(∁RB)=R,则实数a的取值范围是(  )
A、a≤1B、a<1
C、a≥2D、a>2

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=
400x-
1
2
x2,(0≤x<400)
86000,(x≥400)
(其中x是仪器的月产量).
(1)将利润表示为月产量的函数f(x);
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(sinx,cosx),
b
=(cosx,cosx),x∈R,函数f(x)=
a
b

(Ⅰ)求函数f(x)的最小正周期与最大值;
(Ⅱ)求函数f(x)的单调递增区间和对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果f(
1
x
)=
x
1-x
,则当x≠0且x≠1时,f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱锥的高为1,底面边长为2,正三棱锥内有一个球与其四个面相切.则球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式2x2+x≤43x-2的解集为M,求函数f(x)=log2(2x)log2
x
16
(x∈M)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)恒过定点A(1,2),则双曲线的中心到直线l:x=
a2
c
的距离的最大值为
 

查看答案和解析>>

同步练习册答案