分析 (Ⅰ)利用y=ρsinθ,x=ρcosθ,将直线l极坐标方程化成直角坐标方程,先把参数方程化为直角坐标方程,再转化为曲线C的极坐标方程,
(Ⅱ)根据直线和圆的位置关系把圆的关系即可求出m的值.
解答 解:(Ⅰ)直线l的参数方程化为3ρcosθ+4ρsinθ+6=0,
则由ρcosθ=x,ρsinθ=y,得直线的直角坐标方程为3x+4y+6=0.
由$\left\{{\begin{array}{l}{x=3+5cosα}\\{y=5+5sinα}\end{array}}\right.$,消去参数α,得(x-3)2+(y-5)2=25,
即x2+y2-6x-10y+9=0(*),
由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,
代入(*)可得曲线C的极坐标方程为ρ2-6ρcosθ-10ρsinθ+9=0.
(Ⅱ)设直线l':3x+4y+t=0与曲线C相切.
由(Ⅰ)知曲线C的圆心为(3,5),半径为5,则$\frac{|3×3+4×5+t|}{{\sqrt{{3^2}+{4^2}}}}=5$,
解得t=-4或t=-54,
所以l'的方程为3x+4y-4=0或3x+4y-54=0,即$y=-\frac{3}{4}x+1$或$y=-\frac{3}{4}x+\frac{27}{2}$.
又将直线l的方程化为$y=-\frac{3}{4}x-\frac{3}{2}$,
所以$m=1-(-\frac{3}{2})=\frac{5}{2}$或$m=\frac{27}{2}-(-\frac{3}{2})=15$.
点评 本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义,考查学生的计算能力,属于中档题
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{8}{9}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0.2 | B. | 0.4 | C. | 0.8 | D. | 0.9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{28}{3}π$ | B. | $\frac{28}{27}π$ | C. | $\frac{224}{27}\sqrt{21}π$ | D. | $\frac{28}{9}\sqrt{21}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4$\sqrt{3}$+4 | B. | 4$\sqrt{3}$ | C. | 8 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com