【题目】某校高三年级共有学生名,为了解学生某次月考的情况,抽取了部分学生的成绩(得分均为整数,满分为分)进行统计,绘制出如下尚未完成的频率分布表:
分组 | 频数 | 频率 |
(1)补充完整题中的频率分布表;
(2)若成绩在为优秀,估计该校高三年级学生在这次月考中,成绩优秀的学生约为多少人.
科目:高中数学 来源: 题型:
【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.
(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)
(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”系列进行市场销售量调研,通过对该品牌的系列一个阶段的调研得知,发现系列每日的销售量(单位:千克)与销售价格(元/千克)近似满足关系式,其中,为常数.已知销售价格为6元/千克时,每日可售出系列15千克.
(1)求函数的解析式;
(2)若系列的成本为4元/千克,试确定销售价格的值,使该商场每日销售系列所获得的利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:
(月份) | 1 | 2 | 3 | 4 | 5 |
(万盒) | 5 | 5 | 6 | 6 | 8 |
若线性相关,线性回归方程为,则以下为真命题的是( )
A. 每增加1个单位长度,则一定增加0.7个单位长度
B. 每增加1个单位长度,则必减少0.7个单位长度
C. 当时,的预测值为8.1万盒
D. 线性回归直线经过点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表中提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的四组对应数据.
6 | 8 | 10 | 12 | |
2.5 | 3 | 4 | 4.5 |
(1)根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该厂技改前100吨甲产品的生产能耗为45吨标准煤,试根据(1)中的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:
分组(重量) | ||||
频数(个) | 5 | 10 | 20 | 15 |
(1) 根据频数分布表计算苹果的重量在的频率;
(2) 用分层抽样的方法从重量在和的苹果中共抽取4个,其中重量在的有几个?
(3) 在(2)中抽出的4个苹果中,任取2个,求重量在和中各有1个的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是各项均为正整数的等差数列,公差d∈N* , 且{an}中任意两项之和也是该数列中的一项.
(1)若a1=4,则d的取值集合为;
(2)若a1=2m(m∈N*),则d的所有可能取值的和为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣a2x2+ax,a∈R,且a≠0.
(1)若函数f(x)在区间[1,+∞)上是减函数,求实数a的取值范围;
(2)设函数g(x)=(3a+1)x﹣(a2+a)x2 , 当x>1时,f(x)<g(x)恒成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com