【题目】已知函数.
(Ⅰ)若曲线在点处的切线与直线垂直,求实数的取值;
(Ⅱ)求函数的单调区间;
(Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.
【答案】(Ⅰ);(Ⅱ)当时, 减区间为;当时,增区间为,减区间为;(Ⅲ).
【解析】
(1)先求出函数f(x)的定义域和导函数f′(x),再由两直线垂直的条件可得f′(1)=﹣3,求出a的值;
(2)求出f′(x),对a讨论,由f′(x)>0和f′(x)<0进行求解,即判断出函数的单调区间;
(3)由(1)和题意求出g(x)的解析式,求出g′(x),由g′(x)>0和g′(x)<0进行求解,即判断出函数的单调区间,再由条件和函数零点的几何意义列出不等式组,求出b的范围.
(Ⅰ)定义域,,,
∴.
(Ⅱ)
当,,单减区间为
当时
令,单增区间为;令,单减区间为
当时,单减区间
∴当时, 减区间为;
当时,增区间为,减区间为;
(Ⅲ)
令,,
令,;令,
∴是在上唯一的极小值点,也是唯一的最小值点
∴
∵在上有两个零点
∴只须
∴.
科目:高中数学 来源: 题型:
【题目】如图,已知AB为椭圆E:(a>b>0)的长轴,过坐标原点O且倾斜角为135°的直线交椭圆E于C,D两点,且D在x轴上的射影D'恰为椭圆E的长半轴OB的中点.
(1)求椭圆E的离心率;
(2)若AB=8,不过第四象限的直线l与椭圆E和以CD为直径的圆均相切,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品的三个质量指标分别为x, y, z, 用综合指标S =" x" + y + z评价该产品的等级. 若S≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:
产品编号 | A1 | A2 | A3 | A4 | A5 |
质量指标(x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
产品编号 | A6 | A7 | A8 | A9 | A10 |
质量指标(x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率;
(Ⅱ) 在该样品的一等品中, 随机抽取两件产品,
(1) 用产品编号列出所有可能的结果;
(2) 设事件B为 “在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥O﹣ABCD中,OA⊥底面ABCD,且底面ABCD是边长为2的正方形,且OA=2,M,N分别为OA,BC的中点.
(1)求证:直线MN平面OCD;
(2)求点B到平面DMN的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在等腰梯形ABCD中,,E,F分别为AB,CD的中点,,M为DF中点.现将四边形BEFC沿EF折起,使平面平面AEFD,得到如图所示的多面体.在图中,
(1)证明:;
(2)求二面角E-BC-M的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某体育老师随机调查了100名同学,询问他们最喜欢的球类运动,统计数据如表所示.已知最喜欢足球的人数等于最喜欢排球和最喜欢羽毛球的人数之和.
最喜欢的球类运动 | 足球 | 篮球 | 排球 | 乒乓球 | 羽毛球 | 网球 |
人数 | a | 20 | 10 | 15 | b | 5 |
(1)求的值;
(2)将足球、篮球、排球统称为“大球”,将乒乓球、羽毛球、网球统称为“小球”.现按照喜欢大、小球的人数用分层抽样的方式从调查的同学中抽取5人,再从这5人中任选2人,求这2人中至少有一人喜欢小球的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com