精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)若曲线在点处的切线与直线垂直,求实数的取值;

(Ⅱ)求函数的单调区间;

(Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.

【答案】(Ⅰ);(Ⅱ)时, 减区间为时,增区间为减区间为;(Ⅲ)

【解析】

(1)先求出函数fx)的定义域和导函数f′(x),再由两直线垂直的条件可得f′(1)=﹣3,求出a的值;

(2)求出f′(x),对a讨论,由f′(x)>0和f′(x)<0进行求解,即判断出函数的单调区间;

(3)由(1)和题意求出gx)的解析式,求出g′(x),由g′(x)>0和g′(x)<0进行求解,即判断出函数的单调区间,再由条件和函数零点的几何意义列出不等式组,求出b的范围.

(Ⅰ)定义域

(Ⅱ)

,单减区间为

,单增区间为,单减区间为

单减区间

∴当时, 减区间为

时,增区间为减区间为

上唯一的极小值点,也是唯一的最小值点

上有两个零点

∴只须

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知AB为椭圆E:ab>0)的长轴,过坐标原点O且倾斜角为135°的直线交椭圆EC,D两点,且Dx轴上的射影D'恰为椭圆E的长半轴OB的中点

(1)求椭圆E的离心率;

(2)若AB=8,不过第四象限的直线l与椭圆E和以CD为直径的圆均相切,求直线l的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

(2)若圆与直线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】7本不同的书:

1)全部分给6个人,每人至少一本,有多少种不同的分法?

2)全部分给5个人,每人至少一本,有多少种不同的分法?.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的三个质量指标分别为x, y, z, 用综合指标S =" x" + y + z评价该产品的等级. S≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:

产品编号

A1

A2

A3

A4

A5

质量指标(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

产品编号

A6

A7

A8

A9

A10

质量指标(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率;

(Ⅱ) 在该样品的一等品中, 随机抽取两件产品,

(1) 用产品编号列出所有可能的结果;

(2) 设事件B在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥OABCD中,OA⊥底面ABCD,且底面ABCD是边长为2的正方形,且OA2MN分别为OABC的中点.

1)求证:直线MN平面OCD

2)求点B到平面DMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出09之间取整数值的随机数,指定01表示没有击中目标,234567 89表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,EF分别为ABCD的中点,MDF中点.现将四边形BEFC沿EF折起,使平面平面AEFD,得到如图所示的多面体.在图中,

1)证明:

2)求二面角E-BC-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某体育老师随机调查了100名同学,询问他们最喜欢的球类运动,统计数据如表所示.已知最喜欢足球的人数等于最喜欢排球和最喜欢羽毛球的人数之和.

最喜欢的球类运动

足球

篮球

排球

乒乓球

羽毛球

网球

人数

a

20

10

15

b

5

1)求的值;

2)将足球、篮球、排球统称为大球,将乒乓球、羽毛球、网球统称为小球”.现按照喜欢大、小球的人数用分层抽样的方式从调查的同学中抽取5人,再从这5人中任选2人,求这2人中至少有一人喜欢小球的概率.

查看答案和解析>>

同步练习册答案