精英家教网 > 高中数学 > 题目详情
10.已知关于x的方程(n+1)x2+mx-$\frac{n-1}{4}$=0(m,n∈R+)没有实数根,则关于x的方程4x2-4x+m+n=0有实数根的概率是(  )
A.$\frac{2}{7π}$B.$\frac{2}{5π}$C.$\frac{2}{3π}$D.$\frac{2}{π}$

分析 首先由题意分别求出m,n满足的条件,利用几何概型公式,因为由两个变量,所以选择面积比求概率.

解答 解:关于x的方程(n+1)x2+mx-$\frac{n-1}{4}$=0(m,n∈R+)没有实数根,则△=m2+(n+1)(n-1)<0,即m2+n2<1;对应区域的面积为$\frac{π}{4}$,
关于x的方程4x2-4x+m+n=0有实数根,则△=16-16(m+n)≥0,即m+n≤1,对应区域面积为$\frac{1}{2}$,
由几何概型的概率公式得到于x的方程4x2-4x+m+n=0有实数根的概率是:$\frac{\frac{1}{2}}{\frac{π}{4}}=\frac{2}{π}$;
故选D.

点评 本题考查了几何概型的概率求法;关键是明确概率模型以及求出满足条件的事件测度,利用公式解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A为钝角,AB=1,AC=3,AD为BC边上的高,已知$\overrightarrow{AD}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x的取值范围为(  )
A.($\frac{3}{4}$,$\frac{9}{10}$)B.($\frac{1}{2}$,$\frac{9}{10}$)C.($\frac{3}{5}$,$\frac{3}{4}$)D.($\frac{1}{2}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f′(x)是函数f(x)的导数,f(x)=f′(1)•2x+x2,f′(2)=(  )
A.$\frac{12-8ln2}{1-2ln2}$B.$\frac{2}{1-2ln2}$C.$\frac{4}{1-2ln2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=ex-t(x+1),e为自然对数的底数.
(Ⅰ)若f(x)≥0对一切正实数x恒成立,求t的取值范围;
(Ⅱ)设g(x)=f(x)+$\frac{t}{{e}^{x}}$,且A(x1,y1),B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的t≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(Ⅲ)求证:ln(1+n)<1+$\frac{1}{2}$+…+$\frac{1}{n}$≤1+lnn.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若不等式ax2+bx-1<0的解集为{x|-1<x<2},则a+b=(  )
A.6B.4C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}为等比数列,其前n项和为Sn,若a1=-$\frac{1}{2}$,且2S3=S1+S2
(1)求数列{an}的通项公式;
(2)设bn=$\frac{(-1)^{n}n}{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知Sn是数列{an}的前n項和,且a1=1,nan+1=2Sn(n∈N*).
(1)求a2,a3,a4的值;
(2)求数列{an}的通项an
(3)设数列{bn}满足bn=$\left\{\begin{array}{l}{{a}_{n},n=1}\\{(2{a}_{n}-1)•{2}^{n},n≥2}\end{array}\right.$.求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某地现有森林面积为1000hm2,每年增长5%,经过x(x∈N+)年,森林面积为y hm2,则x,y间的函数关系式为y=1000(1+5%)x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知{an}为等差数列,其前n项和为Sn,若a4+2a7=12,则S11=44.

查看答案和解析>>

同步练习册答案