精英家教网 > 高中数学 > 题目详情
11.从双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$的左焦点F引圆x2+y2=4的切线l,切点为T,且l交双曲线的右支于点P,若点M是线段FP的中点,O为坐标原点,则|OM|-|TM|的值为$\sqrt{5}-2$.

分析 如图所示,设F′为双曲线的右焦点,连接PF′,OM,OT.可得OT⊥FT,|FT|=$\sqrt{9-4}$=$\sqrt{5}$,|OM|=$\frac{1}{2}$|PF′|,又|PF|-|PF′|=2a=4,利用|MO|-|MT|=$\frac{1}{2}$|PF′|-($\frac{1}{2}$|PF|-|FT|)即可得出.

解答 解:如图所示,设F′为双曲线的右焦点,连接PF′,OM,OT.
∵OT⊥FT,
∴|FT|=$\sqrt{9-4}$=$\sqrt{5}$,|OM|=$\frac{1}{2}$|PF′|,
|PF|-|PF′|=2a=4,
∴|MO|-|MT|=$\frac{1}{2}$|PF′|-($\frac{1}{2}$|PF|-|FT|)
=|FT|+$\frac{1}{2}$(|PF′|-|PF|)
=$\sqrt{5}-2$.
故答案为:$\sqrt{5}-2$.

点评 本题考查了双曲线的定义标准方程及其性质、三角形的中位线定理、圆的切线的性质、勾股定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知全集U={x|x≤5,x∈N},A={1,2,3},B={3,4},则CU(A∪B)=(  )
A.{1,2,3,4}B.{0,5}C.{5}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.根据条件求下列各函数的解析式:
(1)已知f(x)是二次函数,若f(0)=0,f(x+1)=f(x)+x+1,求f(x).
(2)已知$f(\sqrt{x}+1)=x+2\sqrt{x}$,求f(x)
(3)若f(x)满足$f(x)+2f(\frac{1}{x})=ax$,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.log5125的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x,y满足约束条件$\left\{\begin{array}{l}x-3≤0\\ y-2≥0\\ y≤x+1\end{array}\right.$,则目标函数z=7x-y的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中正确的个数是(  )
 ①命题“任意x∈(0,+∞),2x>1”的否定是“任意x∉(0,+∞),2x≤1;
 ②命题“若cosx=cosy,则x=y”的逆否命题是真命题;
 ③若命题p为真,命题¬q为真,则命题p且q为真;
 ④命题“若x=3,则x2-2x-3=0”的否命题是“若x≠3,则x2-2x-3≠0”.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线的两焦点为F1,F2,焦距为2$\sqrt{5}$,点P在双曲线上,且满足∠F1PF2=90°,又|PF1|-|PF2|=4,则△F1PF2的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线$l:y=k(x-\frac{5}{2})+\frac{3}{2}$被圆x2+y2-5x=0所截得的n条弦的长度成等差数列,最小弦长为数列的首项a1,最大弦长为an,若公差$d∈[{\frac{1}{7},\frac{1}{5}}]$,则n的最大取值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.点P在曲线y=-e-x上,点Q在曲线y=lnx上,线段PQ的中点为M,O是坐标原点,则线段OM的长的最小值是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案