精英家教网 > 高中数学 > 题目详情

【题目】是指大气中空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国标准采用世界卫生组织设定的最宽限值,即日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某城市环保局从该市市区2017年上半年每天的监测数据中随机抽取18天的数据作为样本,将监测值绘制成茎叶图如下图所示(十位为茎,个位为叶).

(1)求这18个数据中超标数据的平均数与方差;

(2)在空气质量为一级的数据中,随机抽取2个数据,求其中恰有一个为日均值小于30微克/立方米的数据的概率;

(3)以这天的日均值来估计一年的空气质量情况,则一年(按天计算)中约有多少天的空气质量超标.

【答案】(1)40,133;(2);(3)160

【解析】试题分析:(1)根据茎叶图中的数据,利用定义即可求空气质量为不超标的数据的平均数与方差;(2)根据古典概型的概率公式即可求出恰有一个为日均值小于30微克/立方米的数据的概率;(3)求出空气质量超标的频率,即可得到结论.

试题解析:(1)空气质量为不超标数据有10个:26,27,33,34,36,39,42,43,55,65.

∴均值 ,方差.

(2)由题目条件可知,空气质量为一级的数据共有4个,分别为26,27,33,34.

则由一切可能的结果组成的基本事件空间为= {(26,27),(26,33),(26,34),(27,33),(27,34),(33,34)},共由6个基本事件组成.

设“其中恰有一个为日均值小于30微克/立方米的数据”为事件A

={(26,33),(26,34),(27,33),(27,34)},共有4个基本事件

所以.

(3)由题意,一年中空气质量超标的概率,所以一年(按天计算)中约有天的空气质量超标.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】3名男生、3名女生站成一排:

(1)女生都不站在两端,有多少不同的站法?

(2)三名男生要相邻,有多少种不同的站法?

(3)三名女生互不相邻,三名男生也互不相邻,有多少种不同的站法?

(4)女生甲,女生乙都不与男生丙相邻,有多少种不同的站法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数是偶函数,设

(1)求的解析式;

(2)若不等式≥0在区间(1,e2]上恒成立,求实数的取值范围;

(3)若方程有三个不同的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察下列等式:

按此规律,第个等式可为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分) 某居民小区有两个相互独立的安全防范系统(简称系统),系统在任意时刻发生故障的概率分别为

(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求的值;

(Ⅱ)设系统在3次相互独立的检测中不发生故障的次数为随机变量,求的概率分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校全体教师年龄的频率分布表如表1所示,其中男教师年龄的频率分布直方图如图2所示.已知该校年龄在岁以下的教师中,男女教师的人数相等.

表1:

(1)求图2中的值;

(2)若按性别分层抽样,随机抽取16人参加技能比赛活动,求男女教师抽取的人数;

(3)若从年龄在的教师中随机抽取2人,参加重阳节活动,求至少有1名女教师的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)设,:轴正半轴的交点为,与曲线的交点为,直线轴的交点为.

(1)表示;

(2)求证:;

(3),,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[ 25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图。

(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;

(2)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=emx﹣lnx﹣2.
(1)若m=1,证明:存在唯一实数t∈( ,1),使得f′(t)=0;
(2)求证:存在0<m<1,使得f(x)>0.

查看答案和解析>>

同步练习册答案